scipy.linalg ============ ``scipy``\ ’s ``linalg`` module contains two functions, ``solve_triangular``, and ``cho_solve``. The functions can be called by prepending them by ``scipy.linalg.``. 1. `scipy.linalg.solve_cho <#cho_solve>`__ 2. `scipy.linalg.solve_triangular <#solve_triangular>`__ cho_solve --------- ``scipy``: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve.html Solve the linear equations :raw-latex:`\begin{equation} \mathbf{A}\cdot\mathbf{x} = \mathbf{b} \end{equation}` given the Cholesky factorization of :math:`\mathbf{A}`. As opposed to ``scipy``, the function simply takes the Cholesky-factorised matrix, :math:`\mathbf{A}`, and :math:`\mathbf{b}` as inputs. .. code:: # code to be run in micropython from ulab import numpy as np from ulab import scipy as spy A = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 2, 1, 8]]) b = np.array([4, 2, 4, 2]) print(spy.linalg.cho_solve(A, b)) .. parsed-literal:: array([-0.01388888888888906, -0.6458333333333331, 2.677083333333333, -0.01041666666666667], dtype=float64) solve_triangular ---------------- ``scipy``: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_triangular.html Solve the linear equation :raw-latex:`\begin{equation} \mathbf{a}\cdot\mathbf{x} = \mathbf{b} \end{equation}` with the assumption that :math:`\mathbf{a}` is a triangular matrix. The two position arguments are :math:`\mathbf{a}`, and :math:`\mathbf{b}`, and the optional keyword argument is ``lower`` with a default value of ``False``. ``lower`` determines, whether data are taken from the lower, or upper triangle of :math:`\mathbf{a}`. Note that :math:`\mathbf{a}` itself does not have to be a triangular matrix: if it is not, then the values are simply taken to be 0 in the upper or lower triangle, as dictated by ``lower``. However, :math:`\mathbf{a}\cdot\mathbf{x}` will yield :math:`\mathbf{b}` only, when :math:`\mathbf{a}` is triangular. You should keep this in mind, when trying to establish the validity of the solution by back substitution. .. code:: # code to be run in micropython from ulab import numpy as np from ulab import scipy as spy a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 2, 1, 8]]) b = np.array([4, 2, 4, 2]) print('a:\n') print(a) print('\nb: ', b) x = spy.linalg.solve_triangular(a, b, lower=True) print('='*20) print('x: ', x) print('\ndot(a, x): ', np.dot(a, x)) .. parsed-literal:: a: array([[3.0, 0.0, 0.0, 0.0], [2.0, 1.0, 0.0, 0.0], [1.0, 0.0, 1.0, 0.0], [1.0, 2.0, 1.0, 8.0]], dtype=float64) b: array([4.0, 2.0, 4.0, 2.0], dtype=float64) ==================== x: array([1.333333333333333, -0.6666666666666665, 2.666666666666667, -0.08333333333333337], dtype=float64) dot(a, x): array([4.0, 2.0, 4.0, 2.0], dtype=float64) With get the same solution, :math:`\mathbf{x}`, with the following matrix, but the dot product of :math:`\mathbf{a}`, and :math:`\mathbf{x}` is no longer :math:`\mathbf{b}`: .. code:: # code to be run in micropython from ulab import numpy as np from ulab import scipy as spy a = np.array([[3, 2, 1, 0], [2, 1, 0, 1], [1, 0, 1, 4], [1, 2, 1, 8]]) b = np.array([4, 2, 4, 2]) print('a:\n') print(a) print('\nb: ', b) x = spy.linalg.solve_triangular(a, b, lower=True) print('='*20) print('x: ', x) print('\ndot(a, x): ', np.dot(a, x)) .. parsed-literal:: a: array([[3.0, 2.0, 1.0, 0.0], [2.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 4.0], [1.0, 2.0, 1.0, 8.0]], dtype=float64) b: array([4.0, 2.0, 4.0, 2.0], dtype=float64) ==================== x: array([1.333333333333333, -0.6666666666666665, 2.666666666666667, -0.08333333333333337], dtype=float64) dot(a, x): array([5.333333333333334, 1.916666666666666, 3.666666666666667, 2.0], dtype=float64)