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Introduction


Enter ulab

ulab is a numpy-like module for micropython and its
derivatives, meant to simplify and speed up common mathematical
operations on arrays. ulab implements a small subset of numpy
and scipy. The functions were chosen such that they might be useful
in the context of a microcontroller. However, the project is a living
one, and suggestions for new features are always welcome.

This document discusses how you can use the library, starting from
building your own firmware, through questions like what affects the
firmware size, what are the trade-offs, and what are the most important
differences to numpy and scipy, respectively. The document is
organised as follows:

The chapter after this one helps you with firmware customisation.

The third chapter gives a very concise summary of the ulab functions
and array methods. This chapter can be used as a quick reference.

The chapters after that are an in-depth review of most functions. Here
you can find usage examples, benchmarks, as well as a thorough
discussion of such concepts as broadcasting, and views versus copies.

The final chapter of this book can be regarded as the programming
manual. The inner working of ulab is dissected here, and you will
also find hints as to how to implement your own numpy-compatible
functions.



Purpose

Of course, the first question that one has to answer is, why on Earth
one would need a fast math library on a microcontroller. After all, it
is not expected that heavy number crunching is going to take place on
bare metal. It is not meant to. On a PC, the main reason for writing
fast code is the sheer amount of data that one wants to process. On a
microcontroller, the data volume is probably small, but it might lead to
catastrophic system failure, if these data are not processed in time,
because the microcontroller is supposed to interact with the outside
world in a timely fashion. In fact, this latter objective was the
initiator of this project: I needed the Fourier transform of a signal
coming from the ADC of the pyboard, and all available options were
simply too slow.

In addition to speed, another issue that one has to keep in mind when
working with embedded systems is the amount of available RAM: I believe,
everything here could be implemented in pure python with relatively
little effort (in fact, there are a couple of python-only
implementations of numpy functions out there), but the price we
would have to pay for that is not only speed, but RAM, too. python
code, if is not frozen, and compiled into the firmware, has to be
compiled at runtime, which is not exactly a cheap process. On top of
that, if numbers are stored in a list or tuple, which would be the
high-level container, then they occupy 8 bytes, no matter, whether they
are all smaller than 100, or larger than one hundred million. This is
obviously a waste of resources in an environment, where resources are
scarce.

Finally, there is a reason for using micropython in the first place.
Namely, that a microcontroller can be programmed in a very elegant, and
pythonic way. But if it is so, why should we not extend this idea to
other tasks and concepts that might come up in this context? If there
was no other reason than this elegance, I would find that convincing
enough.

Based on the above-mentioned considerations, all functions in ulab
are implemented in a way that


	conforms to numpy as much as possible


	is so frugal with RAM as possible,


	and yet, fast. Much faster than pure python. Think of speed-ups of
30-50!




The main points of ulab are


	compact, iterable and slicable containers of numerical data in one to
four dimensions. These containers support all the relevant unary and
binary operators (e.g., len, ==, +, *, etc.)


	vectorised computations on micropython iterables and numerical
arrays (in numpy-speak, universal functions)


	computing statistical properties (mean, standard deviation etc.) on
arrays


	basic linear algebra routines (matrix inversion, multiplication,
reshaping, transposition, determinant, and eigenvalues, Cholesky
decomposition and so on)


	polynomial fits to numerical data, and evaluation of polynomials


	fast Fourier transforms


	filtering of data (convolution and second-order filters)


	function minimisation, fitting, and numerical approximation routines


	interfacing between numerical data and peripheral hardware devices




ulab implements close to a hundred functions and array methods. At
the time of writing this manual (for version 4.0.0), the library adds
approximately 120 kB of extra compiled code to the micropython
(pyboard.v.1.17) firmware. However, if you are tight with flash space,
you can easily shave tens of kB off the firmware. In fact, if only a
small sub-set of functions are needed, you can get away with less than
10 kB of flash space. See the section on customising
ulab.



Resources and legal matters

The source code of the module can be found under
https://github.com/v923z/micropython-ulab/tree/master/code. while the
source of this user manual is under
https://github.com/v923z/micropython-ulab/tree/master/docs.

The MIT licence applies to all material.



Friendly request

If you use ulab, and bump into a bug, or think that a particular
function is missing, or its behaviour does not conform to numpy,
please, raise a ulab
issue on github,
so that the community can profit from your experiences.

Even better, if you find the project to be useful, and think that it
could be made better, faster, tighter, and shinier, please, consider
contributing, and issue a pull request with the implementation of your
improvements and new features. ulab can only become successful, if
it offers what the community needs.

These last comments apply to the documentation, too. If, in your
opinion, the documentation is obscure, misleading, or not detailed
enough, please, let us know, so that we can fix it.



Differences between micropython-ulab and circuitpython-ulab

ulab has originally been developed for micropython, but has
since been integrated into a number of its flavours. Most of these are
simply forks of micropython itself, with some additional
functionality. One of the notable exceptions is circuitpython, which
has slightly diverged at the core level, and this has some minor
consequences. Some of these concern the C implementation details only,
which all have been sorted out with the generous and enthusiastic
support of Jeff Epler from Adafruit
Industries [http://www.adafruit.com].

There are, however, a couple of instances, where the two environments
differ at the python level in how the class properties can be accessed.
We will point out the differences and possible workarounds at the
relevant places in this document.




Customising the firmware

As mentioned above, ulab has considerably grown since its
conception, which also means that it might no longer fit on the
microcontroller of your choice. There are, however, a couple of ways of
customising the firmware, and thereby reducing its size.

All ulab options are listed in a single header file,
ulab.h [https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h],
which contains pre-processor flags for each feature that can be
fine-tuned. The first couple of lines of the file look like this

// The pre-processor constants in this file determine how ulab behaves:
//
// - how many dimensions ulab can handle
// - which functions are included in the compiled firmware
// - whether the python syntax is numpy-like, or modular
// - whether arrays can be sliced and iterated over
// - which binary/unary operators are supported
//
// A considerable amount of flash space can be saved by removing (setting
// the corresponding constants to 0) the unnecessary functions and features.

// Values defined here can be overridden by your own config file as
// make -DULAB_CONFIG_FILE="my_ulab_config.h"
#if defined(ULAB_CONFIG_FILE)
#include ULAB_CONFIG_FILE
#endif

// Adds support for complex ndarrays
#ifndef ULAB_SUPPORTS_COMPLEX
#define ULAB_SUPPORTS_COMPLEX               (1)
#endif

// Determines, whether scipy is defined in ulab. The sub-modules and functions
// of scipy have to be defined separately
#define ULAB_HAS_SCIPY                      (1)

// The maximum number of dimensions the firmware should be able to support
// Possible values lie between 1, and 4, inclusive
#define ULAB_MAX_DIMS                       2

// By setting this constant to 1, iteration over array dimensions will be implemented
// as a function (ndarray_rewind_array), instead of writing out the loops in macros
// This reduces firmware size at the expense of speed
#define ULAB_HAS_FUNCTION_ITERATOR          (0)

// If NDARRAY_IS_ITERABLE is 1, the ndarray object defines its own iterator function
// This option saves approx. 250 bytes of flash space
#define NDARRAY_IS_ITERABLE                 (1)

// Slicing can be switched off by setting this variable to 0
#define NDARRAY_IS_SLICEABLE                (1)

// The default threshold for pretty printing. These variables can be overwritten
// at run-time via the set_printoptions() function
#define ULAB_HAS_PRINTOPTIONS               (1)
#define NDARRAY_PRINT_THRESHOLD             10
#define NDARRAY_PRINT_EDGEITEMS             3

// determines, whether the dtype is an object, or simply a character
// the object implementation is numpythonic, but requires more space
#define ULAB_HAS_DTYPE_OBJECT               (0)

// the ndarray binary operators
#define NDARRAY_HAS_BINARY_OPS              (1)

// Firmware size can be reduced at the expense of speed by using function
// pointers in iterations. For each operator, he function pointer saves around
// 2 kB in the two-dimensional case, and around 4 kB in the four-dimensional case.

#define NDARRAY_BINARY_USES_FUN_POINTER     (0)

#define NDARRAY_HAS_BINARY_OP_ADD           (1)
#define NDARRAY_HAS_BINARY_OP_EQUAL         (1)
#define NDARRAY_HAS_BINARY_OP_LESS          (1)
#define NDARRAY_HAS_BINARY_OP_LESS_EQUAL    (1)
#define NDARRAY_HAS_BINARY_OP_MORE          (1)
#define NDARRAY_HAS_BINARY_OP_MORE_EQUAL    (1)
#define NDARRAY_HAS_BINARY_OP_MULTIPLY      (1)
#define NDARRAY_HAS_BINARY_OP_NOT_EQUAL     (1)
#define NDARRAY_HAS_BINARY_OP_POWER         (1)
#define NDARRAY_HAS_BINARY_OP_SUBTRACT      (1)
#define NDARRAY_HAS_BINARY_OP_TRUE_DIVIDE   (1)
...





The meaning of flags with names _HAS_ should be obvious, so we will
just explain the other options.

To see how much you can gain by un-setting the functions that you do not
need, here are some pointers. In four dimensions, including all
functions adds around 120 kB to the micropython firmware. On the
other hand, if you are interested in Fourier transforms only, and strip
everything else, you get away with less than 5 kB extra.


Compatibility with numpy

The functions implemented in ulab are organised in four sub-modules
at the C level, namely, numpy, scipy, utils, and user.
This modularity is elevated to python, meaning that in order to use
functions that are part of numpy, you have to import numpy as

from ulab import numpy as np

x = np.array([4, 5, 6])
p = np.array([1, 2, 3])
np.polyval(p, x)





There are a couple of exceptions to this rule, namely fft, and
linalg, which are sub-modules even in numpy, thus you have to
write them out as

from ulab import numpy as np

A = np.array([1, 2, 3, 4]).reshape()
np.linalg.trace(A)





Some of the functions in ulab are re-implementations of scipy
functions, and they are to be imported as

from ulab import numpy as np
from ulab import scipy as spy


x = np.array([1, 2, 3])
spy.special.erf(x)





numpy-compatibility has an enormous benefit : namely, by
trying to import, we can guarantee that the same, unmodified
code runs in CPython, as in micropython. The following snippet
is platform-independent, thus, the python code can be tested and
debugged on a computer before loading it onto the microcontroller.

try:
    from ulab import numpy as np
    from ulab import scipy as spy
except ImportError:
    import numpy as np
    import scipy as spy

x = np.array([1, 2, 3])
spy.special.erf(x)







The impact of dimensionality


Reducing the number of dimensions

ulab supports tensors of rank four, but this is expensive in terms
of flash: with all available functions and options, the library adds
around 100 kB to the firmware. However, if such high dimensions are not
required, significant reductions in size can be gotten by changing the
value of

#define ULAB_MAX_DIMS                   2





Two dimensions cost a bit more than half of four, while you can get away
with around 20 kB of flash in one dimension, because all those functions
that don’t make sense (e.g., matrix inversion, eigenvalues etc.) are
automatically stripped from the firmware.



Using the function iterator

In higher dimensions, the firmware size increases, because each
dimension (axis) adds another level of nested loops. An example of this
is the macro of the binary operator in three dimensions

#define BINARY_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)
    type_out *array = (type_out *)results->array;
    size_t j = 0;
    do {
        size_t k = 0;
        do {
            size_t l = 0;
            do {
                *array++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray));
                (larray) += (lstrides)[ULAB_MAX_DIMS - 1];
                (rarray) += (rstrides)[ULAB_MAX_DIMS - 1];
                l++;
            } while(l < (results)->shape[ULAB_MAX_DIMS - 1]);
            (larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];
            (larray) += (lstrides)[ULAB_MAX_DIMS - 2];
            (rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];
            (rarray) += (rstrides)[ULAB_MAX_DIMS - 2];
            k++;
        } while(k < (results)->shape[ULAB_MAX_DIMS - 2]);
        (larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
        (larray) += (lstrides)[ULAB_MAX_DIMS - 3];
        (rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
        (rarray) += (rstrides)[ULAB_MAX_DIMS - 3];
        j++;
    } while(j < (results)->shape[ULAB_MAX_DIMS - 3]);





In order to reduce firmware size, it might make sense in higher
dimensions to make use of the function iterator by setting the

#define ULAB_HAS_FUNCTION_ITERATOR      (1)





constant to 1. This allows the compiler to call the
ndarray_rewind_array function, so that it doesn’t have to unwrap the
loops for k, and j. Instead of the macro above, we now have

#define BINARY_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)
    type_out *array = (type_out *)(results)->array;
    size_t *lcoords = ndarray_new_coords((results)->ndim);
    size_t *rcoords = ndarray_new_coords((results)->ndim);
    for(size_t i=0; i < (results)->len/(results)->shape[ULAB_MAX_DIMS -1]; i++) {
        size_t l = 0;
        do {
            *array++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray));
            (larray) += (lstrides)[ULAB_MAX_DIMS - 1];
            (rarray) += (rstrides)[ULAB_MAX_DIMS - 1];
            l++;
        } while(l < (results)->shape[ULAB_MAX_DIMS - 1]);
        ndarray_rewind_array((results)->ndim, larray, (results)->shape, lstrides, lcoords);
        ndarray_rewind_array((results)->ndim, rarray, (results)->shape, rstrides, rcoords);
    } while(0)





Since the ndarray_rewind_array function is implemented only once, a
lot of space can be saved. Obviously, function calls cost time, thus
such trade-offs must be evaluated for each application. The gain also
depends on which functions and features you include. Operators and
functions that involve two arrays are expensive, because at the C level,
the number of cases that must be handled scales with the squares of the
number of data types. As an example, the innocent-looking expression

from ulab import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

c = a + b





requires 25 loops in C, because the dtypes of both a, and b
can assume 5 different values, and the addition has to be resolved for
all possible cases. Hint: each binary operator costs between 3 and 4 kB
in two dimensions.




The ulab version string

As is customary with python packages, information on the package
version can be found be querying the __version__ string.

# code to be run in micropython

import ulab

print('you are running ulab version', ulab.__version__)





you are running ulab version 2.1.0-2D





The first three numbers indicate the major, minor, and sub-minor
versions of ulab (defined by the ULAB_VERSION constant in
ulab.c [https://github.com/v923z/micropython-ulab/blob/master/code/ulab.c]).
We usually change the minor version, whenever a new function is added to
the code, and the sub-minor version will be incremented, if a bug fix is
implemented.

2D tells us that the particular firmware supports tensors of rank 2
(defined by ULAB_MAX_DIMS in
ulab.h [https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h]).

If you find a bug, please, include the version string in your report!

Should you need the numerical value of ULAB_MAX_DIMS, you can get it
from the version string in the following way:

# code to be run in micropython

import ulab

version = ulab.__version__
version_dims = version.split('-')[1]
version_num = int(version_dims.replace('D', ''))

print('version string: ', version)
print('version dimensions: ', version_dims)
print('numerical value of dimensions: ', version_num)





version string:  2.1.0-2D
version dimensions:  2D
numerical value of dimensions:  2






ulab with complex arrays

If the firmware supports complex arrays, -c is appended to the
version string as can be seen below.

# code to be run in micropython

import ulab

version = ulab.__version__

print('version string: ', version)





version string:  4.0.0-2D-c








Finding out what your firmware supports

ulab implements a number of array operators and functions, but this
does not mean that all of these functions and methods are actually
compiled into the firmware. You can fine-tune your firmware by
setting/unsetting any of the _HAS_ constants in
ulab.h [https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h].


Functions included in the firmware

The version string will not tell you everything about your firmware,
because the supported functions and sub-modules can still arbitrarily be
included or excluded. One way of finding out what is compiled into the
firmware is calling dir with ulab as its argument.

# code to be run in micropython

from ulab import numpy as np
from ulab import scipy as spy


print('===== constants, functions, and modules of numpy =====\n\n', dir(np))

# since fft and linalg are sub-modules, print them separately
print('\nfunctions included in the fft module:\n', dir(np.fft))
print('\nfunctions included in the linalg module:\n', dir(np.linalg))

print('\n\n===== modules of scipy =====\n\n', dir(spy))
print('\nfunctions included in the optimize module:\n', dir(spy.optimize))
print('\nfunctions included in the signal module:\n', dir(spy.signal))
print('\nfunctions included in the special module:\n', dir(spy.special))





===== constants, functions, and modules of numpy =====

 ['__class__', '__name__', 'bool', 'sort', 'sum', 'acos', 'acosh', 'arange', 'arctan2', 'argmax', 'argmin', 'argsort', 'around', 'array', 'asin', 'asinh', 'atan', 'atanh', 'ceil', 'clip', 'concatenate', 'convolve', 'cos', 'cosh', 'cross', 'degrees', 'diag', 'diff', 'e', 'equal', 'exp', 'expm1', 'eye', 'fft', 'flip', 'float', 'floor', 'frombuffer', 'full', 'get_printoptions', 'inf', 'int16', 'int8', 'interp', 'linalg', 'linspace', 'log', 'log10', 'log2', 'logspace', 'max', 'maximum', 'mean', 'median', 'min', 'minimum', 'nan', 'ndinfo', 'not_equal', 'ones', 'pi', 'polyfit', 'polyval', 'radians', 'roll', 'set_printoptions', 'sin', 'sinh', 'sqrt', 'std', 'tan', 'tanh', 'trapz', 'uint16', 'uint8', 'vectorize', 'zeros']

functions included in the fft module:
 ['__class__', '__name__', 'fft', 'ifft']

functions included in the linalg module:
 ['__class__', '__name__', 'cholesky', 'det', 'dot', 'eig', 'inv', 'norm', 'trace']


===== modules of scipy =====

 ['__class__', '__name__', 'optimize', 'signal', 'special']

functions included in the optimize module:
 ['__class__', '__name__', 'bisect', 'fmin', 'newton']

functions included in the signal module:
 ['__class__', '__name__', 'sosfilt', 'spectrogram']

functions included in the special module:
 ['__class__', '__name__', 'erf', 'erfc', 'gamma', 'gammaln']







Methods included in the firmware

The dir function applied to the module or its sub-modules gives
information on what the module and sub-modules include, but is not
enough to find out which methods the ndarray class supports. We can
list the methods by calling dir with the array object itself:

# code to be run in micropython

from ulab import numpy as np

print(dir(np.array))





['__class__', '__name__', 'copy', 'sort', '__bases__', '__dict__', 'dtype', 'flatten', 'itemsize', 'reshape', 'shape', 'size', 'strides', 'tobytes', 'transpose']







Operators included in the firmware

A list of operators cannot be generated as shown above. If you really
need to find out, whether, e.g., the ** operator is supported by the
firmware, you have to try it:

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

try:
    print(a ** b)
except Exception as e:
    print('operator is not supported: ', e)





operator is not supported:  unsupported types for __pow__: 'ndarray', 'ndarray'





The exception above would be raised, if the firmware was compiled with
the

#define NDARRAY_HAS_BINARY_OP_POWER         (0)





definition.






            

          

      

      

    

  

    
      
          
            
  
ndarray, the base class

The ndarray is the underlying container of numerical data. It can be
thought of as micropython’s own array object, but has a great number
of extra features starting with how it can be initialised, which
operations can be done on it, and which functions can accept it as an
argument. One important property of an ndarray is that it is also a
proper micropython iterable.

The ndarray consists of a short header, and a pointer that holds the
data. The pointer always points to a contiguous segment in memory
(numpy is more flexible in this regard), and the header tells the
interpreter, how the data from this segment is to be read out, and what
the bytes mean. Some operations, e.g., reshape, are fast, because
they do not operate on the data, they work on the header, and therefore,
only a couple of bytes are manipulated, even if there are a million data
entries. A more detailed exposition of how operators are implemented can
be found in the section titled Programming ulab.

Since the ndarray is a binary container, it is also compact, meaning
that it takes only a couple of bytes of extra RAM in addition to what is
required for storing the numbers themselves. ndarrays are also
type-aware, i.e., one can save RAM by specifying a data type, and using
the smallest reasonable one. Five such types are defined, namely
uint8, int8, which occupy a single byte of memory per datum,
uint16, and int16, which occupy two bytes per datum, and
float, which occupies four or eight bytes per datum. The
precision/size of the float type depends on the definition of
mp_float_t. Some platforms, e.g., the PYBD, implement doubles,
but some, e.g., the pyboard.v.11, do not. You can find out, what type of
float your particular platform implements by looking at the output of
the .itemsize class property, or looking at the exact
dtype, when you print out an array.

In addition to the five above-mentioned numerical types, it is also
possible to define Boolean arrays, which can be used in the indexing of
data. However, Boolean arrays are really nothing but arrays of type
uint8 with an extra flag.

On the following pages, we will see how one can work with
ndarrays. Those familiar with numpy should find that the
nomenclature and naming conventions of numpy are adhered to as
closely as possible. We will point out the few differences, where
necessary.

For the sake of comparison, in addition to the ulab code snippets,
sometimes the equivalent numpy code is also presented. You can find
out, where the snippet is supposed to run by looking at its first line,
the header of the code block.


The ndinfo function

A concise summary of a couple of the properties of an ndarray can be
printed out by calling the ndinfo function. In addition to finding
out what the shape and strides of the array array, we also get the
itemsize, as well as the type. An interesting piece of information
is the data pointer, which tells us, what the address of the data
segment of the ndarray is. We will see the significance of this in
the section Slicing and indexing.

Note that this function simply prints some information, but does not
return anything. If you need to get a handle of the data contained in
the printout, you should call the dedicated shape, strides, or
itemsize functions directly.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(5), dtype=np.float)
b = np.array(range(25), dtype=np.uint8).reshape((5, 5))
np.ndinfo(a)
print('\n')
np.ndinfo(b)





class: ndarray
shape: (5,)
strides: (8,)
itemsize: 8
data pointer: 0x7f8f6fa2e240
type: float


class: ndarray
shape: (5, 5)
strides: (5, 1)
itemsize: 1
data pointer: 0x7f8f6fa2e2e0
type: uint8







Initialising an array

A new array can be created by passing either a standard micropython
iterable, or another ndarray into the constructor.


Initialising by passing iterables

If the iterable is one-dimensional, i.e., one whose elements are
numbers, then a row vector will be created and returned. If the iterable
is two-dimensional, i.e., one whose elements are again iterables, a
matrix will be created. If the lengths of the iterables are not
consistent, a ValueError will be raised. Iterables of different
types can be mixed in the initialisation function.

If the dtype keyword with the possible
uint8/int8/uint16/int16/float values is supplied, the new
ndarray will have that type, otherwise, it assumes float as
default. In addition, if ULAB_SUPPORTS_COMPLEX is set to 1 in
ulab.h [https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h],
the dtype can also take on the value of complex.

# code to be run in micropython

from ulab import numpy as np

a = [1, 2, 3, 4, 5, 6, 7, 8]
b = np.array(a)

print("a:\t", a)
print("b:\t", b)

# a two-dimensional array with mixed-type initialisers
c = np.array([range(5), range(20, 25, 1), [44, 55, 66, 77, 88]], dtype=np.uint8)
print("\nc:\t", c)

# and now we throw an exception
d = np.array([range(5), range(10), [44, 55, 66, 77, 88]], dtype=np.uint8)
print("\nd:\t", d)





a:   [1, 2, 3, 4, 5, 6, 7, 8]
b:   array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64)

c:   array([[0, 1, 2, 3, 4],
       [20, 21, 22, 23, 24],
       [44, 55, 66, 77, 88]], dtype=uint8)

Traceback (most recent call last):
  File "/dev/shm/micropython.py", line 15, in <module>
ValueError: iterables are not of the same length







Initialising by passing arrays

An ndarray can be initialised by supplying another array. This
statement is almost trivial, since ndarrays are iterables
themselves, though it should be pointed out that initialising through
arrays is a bit faster. This statement is especially true, if the
dtypes of the source and output arrays are the same, because then
the contents can simply be copied without further ado. While type
conversion is also possible, it will always be slower than straight
copying.

# code to be run in micropython

from ulab import numpy as np

a = [1, 2, 3, 4, 5, 6, 7, 8]
b = np.array(a)
c = np.array(b)
d = np.array(b, dtype=np.uint8)

print("a:\t", a)
print("\nb:\t", b)
print("\nc:\t", c)
print("\nd:\t", d)





a:   [1, 2, 3, 4, 5, 6, 7, 8]

b:   array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64)

c:   array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64)

d:   array([1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)





Note that the default type of the ndarray is float. Hence, if
the array is initialised from another array, type conversion will always
take place, except, when the output type is specifically supplied. I.e.,

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(5), dtype=np.uint8)
b = np.array(a)
print("a:\t", a)
print("\nb:\t", b)





a:   array([0, 1, 2, 3, 4], dtype=uint8)

b:   array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=float64)





will iterate over the elements in a, since in the assignment
b = np.array(a), no output type was given, therefore, float was
assumed. On the other hand,

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(5), dtype=np.uint8)
b = np.array(a, dtype=np.uint8)
print("a:\t", a)
print("\nb:\t", b)





a:   array([0, 1, 2, 3, 4], dtype=uint8)

b:   array([0, 1, 2, 3, 4], dtype=uint8)





will simply copy the content of a into b without any iteration,
and will, therefore, be faster. Keep this in mind, whenever the output
type, or performance is important.





Array initialisation functions

There are nine functions that can be used for initialising an array.
Starred functions accept complex as the value of the dtype, if
the firmware was compiled with complex support.


	numpy.arange


	numpy.concatenate


	numpy.diag*


	numpy.empty*


	numpy.eye*


	numpy.frombuffer


	numpy.full*


	numpy.linspace*


	numpy.logspace


	numpy.ones*


	numpy.zeros*





arange

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.arange.html

The function returns a one-dimensional array with evenly spaced values.
Takes 3 positional arguments (two are optional), and the dtype
keyword argument.

# code to be run in micropython

from ulab import numpy as np

print(np.arange(10))
print(np.arange(2, 10))
print(np.arange(2, 10, 3))
print(np.arange(2, 10, 3, dtype=np.float))





array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int16)
array([2, 3, 4, 5, 6, 7, 8, 9], dtype=int16)
array([2, 5, 8], dtype=int16)
array([2.0, 5.0, 8.0], dtype=float64)







concatenate

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html

The function joins a sequence of arrays, if they are compatible in
shape, i.e., if all shapes except the one along the joining axis are
equal.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(25), dtype=np.uint8).reshape((5, 5))
b = np.array(range(15), dtype=np.uint8).reshape((3, 5))

c = np.concatenate((a, b), axis=0)
print(c)





array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24],
       [0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9],
       [10, 11, 12, 13, 14]], dtype=uint8)





WARNING: numpy accepts arbitrary dtypes in the sequence of
arrays, in ulab the dtypes must be identical. If you want to
concatenate different types, you have to convert all arrays to the same
type first. Here b is of float type, so it cannot directly be
concatenated to a. However, if we cast the dtype of b, the
concatenation works:

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(25), dtype=np.uint8).reshape((5, 5))
b = np.array(range(15), dtype=np.float).reshape((5, 3))
d = np.array(b+1, dtype=np.uint8)
print('a: ', a)
print('='*20 + '\nd: ', d)
c = np.concatenate((d, a), axis=1)
print('='*20 + '\nc: ', c)





a:  array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24]], dtype=uint8)
====================
d:  array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9],
       [10, 11, 12],
       [13, 14, 15]], dtype=uint8)
====================
c:  array([[1, 2, 3, 0, 1, 2, 3, 4],
       [4, 5, 6, 5, 6, 7, 8, 9],
       [7, 8, 9, 10, 11, 12, 13, 14],
       [10, 11, 12, 15, 16, 17, 18, 19],
       [13, 14, 15, 20, 21, 22, 23, 24]], dtype=uint8)







diag

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.diag.html

Extract a diagonal, or construct a diagonal array.

The function takes a positional argument, an ndarray, or any
micropython iterable, and an optional keyword argument, a shift,
with a default value of 0. If the first argument is a two-dimensional
array (or a two-dimensional iterable, e.g., a list of lists), the
function returns a one-dimensional array containing the diagonal
entries. The diagonal can be shifted by an amount given in the second
argument. If the shift is larger than the length of the corresponding
axis, an empty array is returned.

If the first argument is a one-dimensional array, the function returns a
two-dimensional square tensor with its diagonal elements given by the
first argument. Again, the diagonal be shifted by an amount given by the
keyword argument.

The diag function can accept a complex array, if the firmware was
compiled with complex support.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3], dtype=np.uint8)
print(np.diag(a))

print('\ndiagonal shifted by 2')
print(np.diag(a, k=2))

print('\ndiagonal shifted by -2')
print(np.diag(a, k=-2))





array([[1, 0, 0],
       [0, 2, 0],
       [0, 0, 3]], dtype=uint8)

diagonal shifted by 2
array([[0, 0, 1, 0, 0],
       [0, 0, 0, 2, 0],
       [0, 0, 0, 0, 3],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0]], dtype=uint8)

diagonal shifted by -2
array([[0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [1, 0, 0, 0, 0],
       [0, 2, 0, 0, 0],
       [0, 0, 3, 0, 0]], dtype=uint8)





# code to be run in micropython

from ulab import numpy as np

a = np.arange(16).reshape((4, 4))
print(a)
print('\ndiagonal of a:')
print(np.diag(a))

print('\ndiagonal of a:')
print(np.diag(a))

print('\ndiagonal of a, shifted by 2')
print(np.diag(a, k=2))

print('\ndiagonal of a, shifted by 5')
print(np.diag(a, k=5))





array([[0, 1, 2, 3],
       [4, 5, 6, 7],
       [8, 9, 10, 11],
       [12, 13, 14, 15]], dtype=int16)

diagonal of a:
array([0, 5, 10, 15], dtype=int16)

diagonal of a:
array([0, 5, 10, 15], dtype=int16)

diagonal of a, shifted by 2
array([2, 7], dtype=int16)

diagonal of a, shifted by 5
array([], dtype=int16)







empty

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.empty.html

empty is simply an alias for zeros, i.e., as opposed to
numpy, the entries of the tensor will be initialised to zero.

The empty function can accept complex as the value of the dtype, if
the firmware was compiled with complex support.



eye

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html

Another special array method is the eye function, whose call
signature is

eye(N, M, k=0, dtype=float)





where N (M) specify the dimensions of the matrix (if only N
is supplied, then we get a square matrix, otherwise one with M rows,
and N columns), and k is the shift of the ones (the main
diagonal corresponds to k=0). Here are a couple of examples.

The eye function can accept complex as the value of the
dtype, if the firmware was compiled with complex support.


With a single argument

# code to be run in micropython

from ulab import numpy as np

print(np.eye(5))





array([[1.0, 0.0, 0.0, 0.0, 0.0],
       [0.0, 1.0, 0.0, 0.0, 0.0],
       [0.0, 0.0, 1.0, 0.0, 0.0],
       [0.0, 0.0, 0.0, 1.0, 0.0],
       [0.0, 0.0, 0.0, 0.0, 1.0]], dtype=float64)







Specifying the dimensions of the matrix

# code to be run in micropython

from ulab import numpy as np

print(np.eye(4, M=6, k=-1, dtype=np.int16))





array([[0, 0, 0, 0, 0, 0],
       [1, 0, 0, 0, 0, 0],
       [0, 1, 0, 0, 0, 0],
       [0, 0, 1, 0, 0, 0]], dtype=int16)





# code to be run in micropython

from ulab import numpy as np

print(np.eye(4, M=6, dtype=np.int8))





array([[1, 0, 0, 0, 0, 0],
       [0, 1, 0, 0, 0, 0],
       [0, 0, 1, 0, 0, 0],
       [0, 0, 0, 1, 0, 0]], dtype=int8)








frombuffer

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.frombuffer.html

The function interprets a contiguous buffer as a one-dimensional array,
and thus can be used for piping buffered data directly into an array.
This method of analysing, e.g., ADC data is much more efficient than
passing the ADC buffer into the array constructor, because
frombuffer simply creates the ndarray header and blindly copies
the memory segment, without inspecting the underlying data.

The function takes a single positional argument, the buffer, and three
keyword arguments. These are the dtype with a default value of
float, the offset, with a default of 0, and the count, with
a default of -1, meaning that all data are taken in.

# code to be run in micropython

from ulab import numpy as np

buffer = b'\x01\x02\x03\x04\x05\x06\x07\x08'
print('buffer: ', buffer)

a = np.frombuffer(buffer, dtype=np.uint8)
print('a, all data read: ', a)

b = np.frombuffer(buffer, dtype=np.uint8, offset=2)
print('b, all data with an offset: ', b)

c = np.frombuffer(buffer, dtype=np.uint8, offset=2, count=3)
print('c, only 3 items with an offset: ', c)





buffer:  b'x01x02x03x04x05x06x07x08'
a, all data read:  array([1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)
b, all data with an offset:  array([3, 4, 5, 6, 7, 8], dtype=uint8)
c, only 3 items with an offset:  array([3, 4, 5], dtype=uint8)



full

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html

The function returns an array of arbitrary dimension, whose elements are
all equal to the second positional argument. The first argument is a
tuple describing the shape of the tensor. The dtype keyword argument
with a default value of float can also be supplied.

The full function can accept a complex scalar, or complex as the
value of dtype, if the firmware was compiled with complex support.

# code to be run in micropython

from ulab import numpy as np

# create an array with the default type
print(np.full((2, 4), 3))

print('\n' + '='*20 + '\n')
# the array type is uint8 now
print(np.full((2, 4), 3, dtype=np.uint8))





array([[3.0, 3.0, 3.0, 3.0],
       [3.0, 3.0, 3.0, 3.0]], dtype=float64)

====================

array([[3, 3, 3, 3],
       [3, 3, 3, 3]], dtype=uint8)







linspace

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html

This function returns an array, whose elements are uniformly spaced
between the start, and stop points. The number of intervals is
determined by the num keyword argument, whose default value is 50.
With the endpoint keyword argument (defaults to True) one can
include stop in the sequence. In addition, the dtype keyword can
be supplied to force type conversion of the output. The default is
float. Note that, when dtype is of integer type, the sequence is
not necessarily evenly spaced. This is not an error, rather a
consequence of rounding. (This is also the numpy behaviour.)

The linspace function can accept complex as the value of the
dtype, if the firmware was compiled with complex support. The output
dtype is automatically complex, if either of the endpoints is a
complex scalar.

# code to be run in micropython

from ulab import numpy as np

# generate a sequence with defaults
print('default sequence:\t', np.linspace(0, 10))

# num=5
print('num=5:\t\t\t', np.linspace(0, 10, num=5))

# num=5, endpoint=False
print('num=5:\t\t\t', np.linspace(0, 10, num=5, endpoint=False))

# num=5, endpoint=False, dtype=uint8
print('num=5:\t\t\t', np.linspace(0, 5, num=7, endpoint=False, dtype=np.uint8))





default sequence:    array([0.0, 0.2040816326530612, 0.4081632653061225, ..., 9.591836734693871, 9.795918367346932, 9.999999999999993], dtype=float64)
num=5:                       array([0.0, 2.5, 5.0, 7.5, 10.0], dtype=float64)
num=5:                       array([0.0, 2.0, 4.0, 6.0, 8.0], dtype=float64)
num=5:                       array([0, 0, 1, 2, 2, 3, 4], dtype=uint8)







logspace

linspace’ equivalent for logarithmically spaced data is
logspace. This function produces a sequence of numbers, in which the
quotient of consecutive numbers is constant. This is a geometric
sequence.

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.logspace.html

This function returns an array, whose elements are uniformly spaced
between the start, and stop points. The number of intervals is
determined by the num keyword argument, whose default value is 50.
With the endpoint keyword argument (defaults to True) one can
include stop in the sequence. In addition, the dtype keyword can
be supplied to force type conversion of the output. The default is
float. Note that, exactly as in linspace, when dtype is of
integer type, the sequence is not necessarily evenly spaced in log
space.

In addition to the keyword arguments found in linspace, logspace
also accepts the base argument. The default value is 10.

# code to be run in micropython

from ulab import numpy as np

# generate a sequence with defaults
print('default sequence:\t', np.logspace(0, 3))

# num=5
print('num=5:\t\t\t', np.logspace(1, 10, num=5))

# num=5, endpoint=False
print('num=5:\t\t\t', np.logspace(1, 10, num=5, endpoint=False))

# num=5, endpoint=False
print('num=5:\t\t\t', np.logspace(1, 10, num=5, endpoint=False, base=2))





default sequence:    array([1.0, 1.151395399326447, 1.325711365590109, ..., 754.3120063354646, 868.5113737513561, 1000.000000000004], dtype=float64)
num=5:                       array([10.0, 1778.279410038923, 316227.766016838, 56234132.5190349, 10000000000.0], dtype=float64)
num=5:                       array([10.0, 630.9573444801933, 39810.71705534974, 2511886.431509581, 158489319.2461114], dtype=float64)
num=5:                       array([2.0, 6.964404506368993, 24.25146506416637, 84.44850628946524, 294.066778879241], dtype=float64)







ones, zeros

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html

A couple of special arrays and matrices can easily be initialised by
calling one of the ones, or zeros functions. ones and
zeros follow the same pattern, and have the call signature

ones(shape, dtype=float)
zeros(shape, dtype=float)





where shape is either an integer, or a tuple specifying the shape.

The ones/zeros functions can accept complex as the value of the
dtype, if the firmware was compiled with complex support.

# code to be run in micropython

from ulab import numpy as np

print(np.ones(6, dtype=np.uint8))

print(np.zeros((6, 4)))





array([1, 1, 1, 1, 1, 1], dtype=uint8)
array([[0.0, 0.0, 0.0, 0.0],
       [0.0, 0.0, 0.0, 0.0],
       [0.0, 0.0, 0.0, 0.0],
       [0.0, 0.0, 0.0, 0.0],
       [0.0, 0.0, 0.0, 0.0],
       [0.0, 0.0, 0.0, 0.0]], dtype=float64)





When specifying the shape, make sure that the length of the tuple is not
larger than the maximum dimension of your firmware.

# code to be run in micropython

from ulab import numpy as np
import ulab

print('maximum number of dimensions: ', ulab.__version__)

print(np.zeros((2, 2, 2)))





maximum number of dimensions:  2.1.0-2D

Traceback (most recent call last):
  File "/dev/shm/micropython.py", line 7, in <module>
TypeError: too many dimensions








Customising array printouts

ndarrays are pretty-printed, i.e., if the number of entries along
the last axis is larger than 10 (default value), then only the first and
last three entries will be printed. Also note that, as opposed to
numpy, the printout always contains the dtype.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(200))
print("a:\t", a)





a:   array([0.0, 1.0, 2.0, ..., 197.0, 198.0, 199.0], dtype=float64)






set_printoptions

The default values can be overwritten by means of the
set_printoptions function
numpy.set_printoptions [https://numpy.org/doc/1.18/reference/generated/numpy.set_printoptions.html],
which accepts two keywords arguments, the threshold, and the
edgeitems. The first of these arguments determines the length of the
longest array that will be printed in full, while the second is the
number of items that will be printed on the left and right hand side of
the ellipsis, if the array is longer than threshold.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(20))
print("a printed with defaults:\t", a)

np.set_printoptions(threshold=200)
print("\na printed in full:\t\t", a)

np.set_printoptions(threshold=10, edgeitems=2)
print("\na truncated with 2 edgeitems:\t", a)





a printed with defaults:     array([0.0, 1.0, 2.0, ..., 17.0, 18.0, 19.0], dtype=float64)

a printed in full:           array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0], dtype=float64)

a truncated with 2 edgeitems:        array([0.0, 1.0, ..., 18.0, 19.0], dtype=float64)







get_printoptions

The set value of the threshold and edgeitems can be retrieved by
calling the get_printoptions function with no arguments. The
function returns a dictionary with two keys.

# code to be run in micropython

from ulab import numpy as np

np.set_printoptions(threshold=100, edgeitems=20)
print(np.get_printoptions())





{'threshold': 100, 'edgeitems': 20}








Methods and properties of ndarrays

Arrays have several properties that can queried, and some methods that
can be called. With the exception of the flatten and transpose
operators, properties return an object that describe some feature of the
array, while the methods return a new array-like object. The imag,
and real properties are included in the firmware only, when it was
compiled with complex support.


	.byteswap


	.copy


	.dtype


	.flat


	.flatten


	.imag*


	.itemsize


	.real*


	.reshape


	.shape


	.size


	.T


	.tobytes


	.tolist


	.transpose


	.sort





.byteswap

numpy
https://numpy.org/doc/stable/reference/generated/numpy.char.chararray.byteswap.html

The method takes a single keyword argument, inplace, with values
True or False, and swaps the bytes in the array. If
inplace = False, a new ndarray is returned, otherwise the
original values are overwritten.

The frombuffer function is a convenient way of receiving data from
peripheral devices that work with buffers. However, it is not guaranteed
that the byte order (in other words, the endianness) of the peripheral
device matches that of the microcontroller. The .byteswap method
makes it possible to change the endianness of the incoming data stream.

Obviously, byteswapping makes sense only for those cases, when a datum
occupies more than one byte, i.e., for the uint16, int16, and
float dtypes. When dtype is either uint8, or int8,
the method simply returns a view or copy of self, depending upon the
value of inplace.

# code to be run in micropython

from ulab import numpy as np

buffer = b'\x01\x02\x03\x04\x05\x06\x07\x08'
print('buffer: ', buffer)

a = np.frombuffer(buffer, dtype=np.uint16)
print('a: ', a)
b = a.byteswap()
print('b: ', b)





buffer:  b'x01x02x03x04x05x06x07x08'
a:  array([513, 1027, 1541, 2055], dtype=uint16)
b:  array([258, 772, 1286, 1800], dtype=uint16)



.copy

The .copy method creates a new deep copy of an array, i.e., the
entries of the source array are copied into the target array.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4], dtype=np.int8)
b = a.copy()
print('a: ', a)
print('='*20)
print('b: ', b)





a:  array([1, 2, 3, 4], dtype=int8)
====================
b:  array([1, 2, 3, 4], dtype=int8)







.dtype

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.dtype.htm

The .dtype property is the dtype of an array. This can then be
used for initialising another array with the matching type. ulab
implements two versions of dtype; one that is numpy-like, i.e.,
one, which returns a dtype object, and one that is significantly
cheaper in terms of flash space, but does not define a dtype object,
and holds a single character (number) instead.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4], dtype=np.int8)
b = np.array([5, 6, 7], dtype=a.dtype)
print('a: ', a)
print('dtype of a: ', a.dtype)
print('\nb: ', b)





a:  array([1, 2, 3, 4], dtype=int8)
dtype of a:  dtype('int8')

b:  array([5, 6, 7], dtype=int8)





If the ulab.h header file sets the pre-processor constant
ULAB_HAS_DTYPE_OBJECT to 0 as

#define ULAB_HAS_DTYPE_OBJECT               (0)





then the output of the previous snippet will be

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4], dtype=np.int8)
b = np.array([5, 6, 7], dtype=a.dtype)
print('a: ', a)
print('dtype of a: ', a.dtype)
print('\nb: ', b)





a:  array([1, 2, 3, 4], dtype=int8)
dtype of a:  98

b:  array([5, 6, 7], dtype=int8)





Here 98 is nothing but the ASCII value of the character b, which is
the type code for signed 8-bit integers. The object definition adds
around 600 bytes to the firmware.



.flat

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flat.htm

.flat returns the array’s flat iterator. For one-dimensional objects
the flat iterator is equivalent to the standart iterator, while for
higher dimensional tensors, it amounts to first flattening the array,
and then iterating over it. Note, however, that the flat iterator does
not consume RAM beyond what is required for holding the position of the
iterator itself, while flattening produces a new copy.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4], dtype=np.int8)
for _a in a:
    print(_a)

a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=np.int8)
print('a:\n', a)

for _a in a:
    print(_a)

for _a in a.flat:
    print(_a)





1
2
3
4
a:
 array([[1, 2, 3, 4],
       [5, 6, 7, 8]], dtype=int8)
array([1, 2, 3, 4], dtype=int8)
array([5, 6, 7, 8], dtype=int8)
1
2
3
4
5
6
7
8







.flatten

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flatten.htm

.flatten returns the flattened array. The array can be flattened in
C style (i.e., moving along the last axis in the tensor), or in
fortran style (i.e., moving along the first axis in the tensor).

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4], dtype=np.int8)
print("a: \t\t", a)
print("a flattened: \t", a.flatten())

b = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int8)
print("\nb:", b)

print("b flattened (C): \t", b.flatten())
print("b flattened (F): \t", b.flatten(order='F'))





a:           array([1, 2, 3, 4], dtype=int8)
a flattened:         array([1, 2, 3, 4], dtype=int8)

b: array([[1, 2, 3],
       [4, 5, 6]], dtype=int8)
b flattened (C):     array([1, 2, 3, 4, 5, 6], dtype=int8)
b flattened (F):     array([1, 4, 2, 5, 3, 6], dtype=int8)







.imag

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.imag.html

The .imag property is defined only, if the firmware was compiled
with complex support, and returns a copy with the imaginary part of an
array. If the array is real, then the output is straight zeros with the
dtype of the input. If the input is complex, the output dtype is
always float, irrespective of the values.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3], dtype=np.uint16)
print("a:\t", a)
print("a.imag:\t", a.imag)

b = np.array([1, 2+1j, 3-1j], dtype=np.complex)
print("\nb:\t", b)
print("b.imag:\t", b.imag)





a:   array([1, 2, 3], dtype=uint16)
a.imag:      array([0, 0, 0], dtype=uint16)

b:   array([1.0+0.0j, 2.0+1.0j, 3.0-1.0j], dtype=complex)
b.imag:      array([0.0, 1.0, -1.0], dtype=float64)







.itemsize

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.itemsize.html

The .itemsize property is an integer with the size of elements in
the array.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3], dtype=np.int8)
print("a:\n", a)
print("itemsize of a:", a.itemsize)

b= np.array([[1, 2], [3, 4]], dtype=np.float)
print("\nb:\n", b)
print("itemsize of b:", b.itemsize)





a:
 array([1, 2, 3], dtype=int8)
itemsize of a: 1

b:
 array([[1.0, 2.0],
       [3.0, 4.0]], dtype=float64)
itemsize of b: 8







.real

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.real.html

The .real property is defined only, if the firmware was compiled
with complex support, and returns a copy with the real part of an array.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3], dtype=np.uint16)
print("a:\t", a)
print("a.real:\t", a.real)

b = np.array([1, 2+1j, 3-1j], dtype=np.complex)
print("\nb:\t", b)
print("b.real:\t", b.real)





a:   array([1, 2, 3], dtype=uint16)
a.real:      array([1, 2, 3], dtype=uint16)

b:   array([1.0+0.0j, 2.0+1.0j, 3.0-1.0j], dtype=complex)
b.real:      array([1.0, 2.0, 3.0], dtype=float64)







.reshape

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

reshape re-writes the shape properties of an ndarray, but the
array will not be modified in any other way. The function takes a single
2-tuple with two integers as its argument. The 2-tuple should specify
the desired number of rows and columns. If the new shape is not
consistent with the old, a ValueError exception will be raised.

# code to be run in micropython

from ulab import numpy as np

a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], dtype=np.uint8)
print('a (4 by 4):', a)
print('a (2 by 8):', a.reshape((2, 8)))
print('a (1 by 16):', a.reshape((1, 16)))





a (4 by 4): array([[1, 2, 3, 4],
       [5, 6, 7, 8],
       [9, 10, 11, 12],
       [13, 14, 15, 16]], dtype=uint8)
a (2 by 8): array([[1, 2, 3, 4, 5, 6, 7, 8],
       [9, 10, 11, 12, 13, 14, 15, 16]], dtype=uint8)
a (1 by 16): array([[1, 2, 3, ..., 14, 15, 16]], dtype=uint8)





# code to be run in CPython

Note that `ndarray.reshape()` can also be called by assigning to `ndarray.shape`.







.shape

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html

The .shape property is a tuple whose elements are the length of the
array along each axis.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4], dtype=np.int8)
print("a:\n", a)
print("shape of a:", a.shape)

b= np.array([[1, 2], [3, 4]], dtype=np.int8)
print("\nb:\n", b)
print("shape of b:", b.shape)





a:
 array([1, 2, 3, 4], dtype=int8)
shape of a: (4,)

b:
 array([[1, 2],
       [3, 4]], dtype=int8)
shape of b: (2, 2)





By assigning a tuple to the .shape property, the array can be
reshaped:

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
print('a:\n', a)

a.shape = (3, 3)
print('\na:\n', a)





a:
 array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0], dtype=float64)

a:
 array([[1.0, 2.0, 3.0],
       [4.0, 5.0, 6.0],
       [7.0, 8.0, 9.0]], dtype=float64)







.size

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.size.html

The .size property is an integer specifying the number of elements
in the array.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3], dtype=np.int8)
print("a:\n", a)
print("size of a:", a.size)

b= np.array([[1, 2], [3, 4]], dtype=np.int8)
print("\nb:\n", b)
print("size of b:", b.size)





a:
 array([1, 2, 3], dtype=int8)
size of a: 3

b:
 array([[1, 2],
     [3, 4]], dtype=int8)
size of b: 4





.T

The .T property of the ndarray is equivalent to
.transpose.



.tobytes

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tobytes.html

The .tobytes method can be used for acquiring a handle of the
underlying data pointer of an array, and it returns a new bytearray
that can be fed into any method that can accep a bytearray, e.g.,
ADC data can be buffered into this bytearray, or the bytearray
can be fed into a DAC. Since the bytearray is really nothing but the
bare data container of the array, any manipulation on the bytearray
automatically modifies the array itself.

Note that the method raises a ValueError exception, if the array is
not dense (i.e., it has already been sliced).

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(8), dtype=np.uint8)
print('a: ', a)
b = a.tobytes()
print('b: ', b)

# modify b
b[0] = 13

print('='*20)
print('b: ', b)
print('a: ', a)





a:  array([0, 1, 2, 3, 4, 5, 6, 7], dtype=uint8)
b:  bytearray(b'x00x01x02x03x04x05x06x07')
====================
b:  bytearray(b'rx01x02x03x04x05x06x07')
a:  array([13, 1, 2, 3, 4, 5, 6, 7], dtype=uint8)



.tolist

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tolist.html

The .tolist method can be used for converting the numerical array
into a (nested) python lists.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(4), dtype=np.uint8)
print('a: ', a)
b = a.tolist()
print('b: ', b)

c = a.reshape((2, 2))
print('='*20)
print('c: ', c)
d = c.tolist()
print('d: ', d)





a:  array([0, 1, 2, 3], dtype=uint8)
b:  [0, 1, 2, 3]
====================
c:  array([[0, 1],
       [2, 3]], dtype=uint8)
d:  [[0, 1], [2, 3]]







.transpose

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html

Returns the transposed array. Only defined, if the number of maximum
dimensions is larger than 1.

# code to be run in micropython

from ulab import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=np.uint8)
print('a:\n', a)
print('shape of a:', a.shape)
a.transpose()
print('\ntranspose of a:\n', a)
print('shape of a:', a.shape)





a:
 array([[1, 2, 3],
     [4, 5, 6],
     [7, 8, 9],
     [10, 11, 12]], dtype=uint8)
shape of a: (4, 3)

transpose of a:
 array([[1, 4, 7, 10],
     [2, 5, 8, 11],
     [3, 6, 9, 12]], dtype=uint8)
shape of a: (3, 4)





The transpose of the array can also be gotten through the T
property:

# code to be run in micropython

from ulab import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.uint8)
print('a:\n', a)
print('\ntranspose of a:\n', a.T)





a:
 array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]], dtype=uint8)

transpose of a:
 array([[1, 4, 7],
       [2, 5, 8],
       [3, 6, 9]], dtype=uint8)







.sort

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html

In-place sorting of an ndarray. For a more detailed exposition, see
sort.

# code to be run in micropython

from ulab import numpy as np

a = np.array([[1, 12, 3, 0], [5, 3, 4, 1], [9, 11, 1, 8], [7, 10, 0, 1]], dtype=np.uint8)
print('\na:\n', a)
a.sort(axis=0)
print('\na sorted along vertical axis:\n', a)

a = np.array([[1, 12, 3, 0], [5, 3, 4, 1], [9, 11, 1, 8], [7, 10, 0, 1]], dtype=np.uint8)
a.sort(axis=1)
print('\na sorted along horizontal axis:\n', a)

a = np.array([[1, 12, 3, 0], [5, 3, 4, 1], [9, 11, 1, 8], [7, 10, 0, 1]], dtype=np.uint8)
a.sort(axis=None)
print('\nflattened a sorted:\n', a)





a:
 array([[1, 12, 3, 0],
       [5, 3, 4, 1],
       [9, 11, 1, 8],
       [7, 10, 0, 1]], dtype=uint8)

a sorted along vertical axis:
 array([[1, 3, 0, 0],
       [5, 10, 1, 1],
       [7, 11, 3, 1],
       [9, 12, 4, 8]], dtype=uint8)

a sorted along horizontal axis:
 array([[0, 1, 3, 12],
       [1, 3, 4, 5],
       [1, 8, 9, 11],
       [0, 1, 7, 10]], dtype=uint8)

flattened a sorted:
 array([0, 0, 1, ..., 10, 11, 12], dtype=uint8)








Unary operators

With the exception of len, which returns a single number, all unary
operators manipulate the underlying data element-wise.


len

This operator takes a single argument, the array, and returns either the
length of the first axis.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4, 5], dtype=np.uint8)
b = np.array([range(5), range(5), range(5), range(5)], dtype=np.uint8)

print("a:\t", a)
print("length of a: ", len(a))
print("shape of a: ", a.shape)
print("\nb:\t", b)
print("length of b: ", len(b))
print("shape of b: ", b.shape)





a:   array([1, 2, 3, 4, 5], dtype=uint8)
length of a:  5
shape of a:  (5,)

b:   array([[0, 1, 2, 3, 4],
       [0, 1, 2, 3, 4],
       [0, 1, 2, 3, 4],
       [0, 1, 2, 3, 4]], dtype=uint8)
length of b:  2
shape of b:  (4, 5)





The number returned by len is also the length of the iterations,
when the array supplies the elements for an iteration (see later).



invert

The function is defined for integer data types (uint8, int8,
uint16, and int16) only, takes a single argument, and returns
the element-by-element, bit-wise inverse of the array. If a float is
supplied, the function raises a ValueError exception.

With signed integers (int8, and int16), the results might be
unexpected, as in the example below:

# code to be run in micropython

from ulab import numpy as np

a = np.array([0, -1, -100], dtype=np.int8)
print("a:\t\t", a)
print("inverse of a:\t", ~a)

a = np.array([0, 1, 254, 255], dtype=np.uint8)
print("\na:\t\t", a)
print("inverse of a:\t", ~a)





a:           array([0, -1, -100], dtype=int8)
inverse of a:        array([-1, 0, 99], dtype=int8)

a:           array([0, 1, 254, 255], dtype=uint8)
inverse of a:        array([255, 254, 1, 0], dtype=uint8)







abs

This function takes a single argument, and returns the
element-by-element absolute value of the array. When the data type is
unsigned (uint8, or uint16), a copy of the array will be
returned immediately, and no calculation takes place.

# code to be run in micropython

from ulab import numpy as np

a = np.array([0, -1, -100], dtype=np.int8)
print("a:\t\t\t ", a)
print("absolute value of a:\t ", abs(a))





a:                    array([0, -1, -100], dtype=int8)
absolute value of a:          array([0, 1, 100], dtype=int8)







neg

This operator takes a single argument, and changes the sign of each
element in the array. Unsigned values are wrapped.

# code to be run in micropython

from ulab import numpy as np

a = np.array([10, -1, 1], dtype=np.int8)
print("a:\t\t", a)
print("negative of a:\t", -a)

b = np.array([0, 100, 200], dtype=np.uint8)
print("\nb:\t\t", b)
print("negative of b:\t", -b)





a:           array([10, -1, 1], dtype=int8)
negative of a:       array([-10, 1, -1], dtype=int8)

b:           array([0, 100, 200], dtype=uint8)
negative of b:       array([0, 156, 56], dtype=uint8)







pos

This function takes a single argument, and simply returns a copy of the
array.

# code to be run in micropython

from ulab import numpy as np

a = np.array([10, -1, 1], dtype=np.int8)
print("a:\t\t", a)
print("positive of a:\t", +a)





a:           array([10, -1, 1], dtype=int8)
positive of a:       array([10, -1, 1], dtype=int8)








Binary operators

ulab implements the +, -, *, /, **, <,
>, <=, >=, ==, !=, +=, -=, *=, /=,
**= binary operators that work element-wise. Broadcasting is
available, meaning that the two operands do not even have to have the
same shape. If the lengths along the respective axes are equal, or one
of them is 1, or the axis is missing, the element-wise operation can
still be carried out. A thorough explanation of broadcasting can be
found under https://numpy.org/doc/stable/user/basics.broadcasting.html.

WARNING: note that relational operators (<, >, <=,
>=, ==, !=) should have the ndarray on their left hand
side, when compared to scalars. This means that the following works

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3])
print(a > 2)





array([False, False, True], dtype=bool)





while the equivalent statement, 2 < a, will raise a TypeError
exception:

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3])
print(2 < a)





Traceback (most recent call last):
  File "/dev/shm/micropython.py", line 5, in <module>
TypeError: unsupported types for __lt__: 'int', 'ndarray'





WARNING: circuitpython users should use the equal, and
not_equal operators instead of ==, and !=. See the section
on array comparison for details.


Upcasting

Binary operations require special attention, because two arrays with
different typecodes can be the operands of an operation, in which case
it is not trivial, what the typecode of the result is. This decision on
the result’s typecode is called upcasting. Since the number of typecodes
in ulab is significantly smaller than in numpy, we have to
define new upcasting rules. Where possible, I followed numpy’s
conventions.

ulab observes the following upcasting rules:


	Operations on two ndarrays of the same dtype preserve their
dtype, even when the results overflow.


	if either of the operands is a float, the result is automatically a
float


	When one of the operands is a scalar, it will internally be turned
into a single-element ndarray with the smallest possible
dtype. Thus, e.g., if the scalar is 123, it will be converted
into an array of dtype uint8, while -1000 will be converted
into int16. An mp_obj_float, will always be promoted to
dtype float. Similarly, if ulab supports complex arrays,
the result of a binary operation involving a complex array is
always complex. Other micropython types (e.g., lists, tuples,
etc.) raise a TypeError exception.


	











	left hand side

	right hand side

	ulab result

	numpy result





	uint8

	int8

	int16

	int16



	uint8

	int16

	int16

	int16



	uint8

	uint16

	uint16

	uint16



	int8

	int16

	int16

	int16



	int8

	uint16

	uint16

	int32



	uint16

	int16

	float

	int32






Note that the last two operations are promoted to int32 in
numpy.

WARNING: Due to the lower number of available data types, the
upcasting rules of ulab are slightly different to those of
numpy. Watch out for this, when porting code!

Upcasting can be seen in action in the following snippet:

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4], dtype=np.uint8)
b = np.array([1, 2, 3, 4], dtype=np.int8)
print("a:\t", a)
print("b:\t", b)
print("a+b:\t", a+b)

c = np.array([1, 2, 3, 4], dtype=np.float)
print("\na:\t", a)
print("c:\t", c)
print("a*c:\t", a*c)





a:   array([1, 2, 3, 4], dtype=uint8)
b:   array([1, 2, 3, 4], dtype=int8)
a+b:         array([2, 4, 6, 8], dtype=int16)

a:   array([1, 2, 3, 4], dtype=uint8)
c:   array([1.0, 2.0, 3.0, 4.0], dtype=float64)
a*c:         array([1.0, 4.0, 9.0, 16.0], dtype=float64)







Benchmarks

The following snippet compares the performance of binary operations to a
possible implementation in python. For the time measurement, we will
take the following snippet from the micropython manual:

# code to be run in micropython

import utime

def timeit(f, *args, **kwargs):
    func_name = str(f).split(' ')[1]
    def new_func(*args, **kwargs):
        t = utime.ticks_us()
        result = f(*args, **kwargs)
        print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')
        return result
    return new_func





# code to be run in micropython

from ulab import numpy as np

@timeit
def py_add(a, b):
    return [a[i]+b[i] for i in range(1000)]

@timeit
def py_multiply(a, b):
    return [a[i]*b[i] for i in range(1000)]

@timeit
def ulab_add(a, b):
    return a + b

@timeit
def ulab_multiply(a, b):
    return a * b

a = [0.0]*1000
b = range(1000)

print('python add:')
py_add(a, b)

print('\npython multiply:')
py_multiply(a, b)

a = np.linspace(0, 10, num=1000)
b = np.ones(1000)

print('\nulab add:')
ulab_add(a, b)

print('\nulab multiply:')
ulab_multiply(a, b)





python add:
execution time:  10051  us

python multiply:
execution time:  14175  us

ulab add:
execution time:  222  us

ulab multiply:
execution time:  213  us





The python implementation above is not perfect, and certainly, there is
much room for improvement. However, the factor of 50 difference in
execution time is very spectacular. This is nothing but a consequence of
the fact that the ulab functions run C code, with very little
python overhead. The factor of 50 appears to be quite universal: the FFT
routine obeys similar scaling (see Speed of FFTs),
and this number came up with font rendering, too: fast font rendering
on graphical
displays [https://forum.micropython.org/viewtopic.php?f=15&t=5815&p=33362&hilit=ufont#p33383].




Comparison operators

The smaller than, greater than, smaller or equal, and greater or equal
operators return a vector of Booleans indicating the positions
(True), where the condition is satisfied.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4, 5, 6, 7, 8], dtype=np.uint8)
print(a < 5)





array([True, True, True, True, False, False, False, False], dtype=bool)





WARNING: at the moment, due to micropython’s implementation
details, the ndarray must be on the left hand side of the relational
operators.

That is, while a < 5 and 5 > a have the same meaning, the
following code will not work:

# code to be run in micropython

import ulab as np

a = np.array([1, 2, 3, 4, 5, 6, 7, 8], dtype=np.uint8)
print(5 > a)





Traceback (most recent call last):
  File "/dev/shm/micropython.py", line 5, in <module>
TypeError: unsupported types for __gt__: 'int', 'ndarray'







Iterating over arrays

ndarrays are iterable, which means that their elements can also be
accessed as can the elements of a list, tuple, etc. If the array is
one-dimensional, the iterator returns scalars, otherwise a new
reduced-dimensional view is created and returned.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4, 5], dtype=np.uint8)
b = np.array([range(5), range(10, 15, 1), range(20, 25, 1), range(30, 35, 1)], dtype=np.uint8)

print("a:\t", a)

for i, _a in enumerate(a):
    print("element %d in a:"%i, _a)

print("\nb:\t", b)

for i, _b in enumerate(b):
    print("element %d in b:"%i, _b)





a:   array([1, 2, 3, 4, 5], dtype=uint8)
element 0 in a: 1
element 1 in a: 2
element 2 in a: 3
element 3 in a: 4
element 4 in a: 5

b:   array([[0, 1, 2, 3, 4],
       [10, 11, 12, 13, 14],
       [20, 21, 22, 23, 24],
       [30, 31, 32, 33, 34]], dtype=uint8)
element 0 in b: array([0, 1, 2, 3, 4], dtype=uint8)
element 1 in b: array([10, 11, 12, 13, 14], dtype=uint8)
element 2 in b: array([20, 21, 22, 23, 24], dtype=uint8)
element 3 in b: array([30, 31, 32, 33, 34], dtype=uint8)







Slicing and indexing


Views vs. copies

numpy has a very important concept called views, which is a
powerful extension of python’s own notion of slicing. Slices are
special python objects of the form

slice = start:end:stop





where start, end, and stop are (not necessarily
non-negative) integers. Not all of these three numbers must be specified
in an index, in fact, all three of them can be missing. The interpreter
takes care of filling in the missing values. (Note that slices cannot be
defined in this way, only there, where an index is expected.) For a good
explanation on how slices work in python, you can read the stackoverflow
question
https://stackoverflow.com/questions/509211/understanding-slice-notation.

In order to see what slicing does, let us take the string
a = '012345679'! We can extract every second character by creating
the slice ::2, which is equivalent to 0:len(a):2, i.e.,
increments the character pointer by 2 starting from 0, and traversing
the string up to the very end.

# code to be run in CPython

string = '0123456789'
string[::2]





'02468'





Now, we can do the same with numerical arrays.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(10), dtype=np.uint8)
print('a:\t', a)

print('a[::2]:\t', a[::2])





a:   array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8)
a[::2]:      array([0, 2, 4, 6, 8], dtype=uint8)





This looks similar to string above, but there is a very important
difference that is not so obvious. Namely, string[::2] produces a
partial copy of string, while a[::2] only produces a view of
a. What this means is that a, and a[::2] share their data,
and the only difference between the two is, how the data are read out.
In other words, internally, a[::2] has the same data pointer as
a. We can easily convince ourselves that this is indeed the case by
calling the ndinfo function: the data
pointer entry is the same in the two printouts.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(10), dtype=np.uint8)
print('a: ', a, '\n')
np.ndinfo(a)
print('\n' + '='*20)
print('a[::2]: ', a[::2], '\n')
np.ndinfo(a[::2])





a:  array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8)

class: ndarray
shape: (10,)
strides: (1,)
itemsize: 1
data pointer: 0x7ff6c6193220
type: uint8

====================
a[::2]:  array([0, 2, 4, 6, 8], dtype=uint8)

class: ndarray
shape: (5,)
strides: (2,)
itemsize: 1
data pointer: 0x7ff6c6193220
type: uint8





If you are still a bit confused about the meaning of views, the
section Slicing and assigning to
slices should clarify the issue.



Indexing

The simplest form of indexing is specifying a single integer between the
square brackets as in

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(10), dtype=np.uint8)
print("a: ", a)
print("the first, and last element of a:\n", a[0], a[-1])
print("the second, and last but one element of a:\n", a[1], a[-2])





a:  array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8)
the first, and last element of a:
 0 9
the second, and last but one element of a:
 1 8





Indexing can be applied to higher-dimensional tensors, too. When the
length of the indexing sequences is smaller than the number of
dimensions, a new view is returned, otherwise, we get a single number.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(9), dtype=np.uint8).reshape((3, 3))
print("a:\n", a)
print("a[0]:\n", a[0])
print("a[1,1]: ", a[1,1])





a:
 array([[0, 1, 2],
    [3, 4, 5],
    [6, 7, 8]], dtype=uint8)
a[0]:
 array([[0, 1, 2]], dtype=uint8)
a[1,1]:  4





Indices can also be a list of Booleans. By using a Boolean list, we can
select those elements of an array that satisfy a specific condition. At
the moment, such indexing is defined for row vectors only; when the rank
of the tensor is higher than 1, the function raises a
NotImplementedError exception, though this will be rectified in a
future version of ulab.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(9), dtype=np.float)
print("a:\t", a)
print("a < 5:\t", a[a < 5])





a:   array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float)
a < 5:       array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)





Indexing with Boolean arrays can take more complicated expressions. This
is a very concise way of comparing two vectors, e.g.:

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(9), dtype=np.uint8)
b = np.array([4, 4, 4, 3, 3, 3, 13, 13, 13], dtype=np.uint8)
print("a:\t", a)
print("\na**2:\t", a*a)
print("\nb:\t", b)
print("\n100*sin(b):\t", np.sin(b)*100.0)
print("\na[a*a > np.sin(b)*100.0]:\t", a[a*a > np.sin(b)*100.0])





a:   array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)

a**2:        array([0, 1, 4, 9, 16, 25, 36, 49, 64], dtype=uint16)

b:   array([4, 4, 4, 3, 3, 3, 13, 13, 13], dtype=uint8)

100*sin(b):  array([-75.68024953079282, -75.68024953079282, -75.68024953079282, 14.11200080598672, 14.11200080598672, 14.11200080598672, 42.01670368266409, 42.01670368266409, 42.01670368266409], dtype=float)

a[a*a > np.sin(b)*100.0]:    array([0, 1, 2, 4, 5, 7, 8], dtype=uint8)





Boolean indices can also be used in assignments, if the array is
one-dimensional. The following example replaces the data in an array,
wherever some condition is fulfilled.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(9), dtype=np.uint8)
b = np.array(range(9)) + 12

print(a[b < 15])

a[b < 15] = 123
print(a)





array([0, 1, 2], dtype=uint8)
array([123, 123, 123, 3, 4, 5, 6, 7, 8], dtype=uint8)





On the right hand side of the assignment we can even have another array.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(9), dtype=np.uint8)
b = np.array(range(9)) + 12

print(a[b < 15], b[b < 15])

a[b < 15] = b[b < 15]
print(a)





array([0, 1, 2], dtype=uint8) array([12.0, 13.0, 14.0], dtype=float)
array([12, 13, 14, 3, 4, 5, 6, 7, 8], dtype=uint8)







Slicing and assigning to slices

You can also generate sub-arrays by specifying slices as the index of an
array. Slices are special python objects of the form

# code to be run in micropython

from ulab import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.uint8)
print('a:\n', a)

# the first row
print('\na[0]:\n', a[0])

# the first two elements of the first row
print('\na[0,:2]:\n', a[0,:2])

# the zeroth element in each row (also known as the zeroth column)
print('\na[:,0]:\n', a[:,0])

# the last row
print('\na[-1]:\n', a[-1])

# the last two rows backwards
print('\na[-1:-3:-1]:\n', a[-1:-3:-1])





a:
 array([[1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]], dtype=uint8)

a[0]:
 array([[1, 2, 3]], dtype=uint8)

a[0,:2]:
 array([[1, 2]], dtype=uint8)

a[:,0]:
 array([[1],
    [4],
    [7]], dtype=uint8)

a[-1]:
 array([[7, 8, 9]], dtype=uint8)

a[-1:-3:-1]:
 array([[7, 8, 9],
    [4, 5, 6]], dtype=uint8)





Assignment to slices can be done for the whole slice, per row, and per
column. A couple of examples should make these statements clearer:

# code to be run in micropython

from ulab import numpy as np

a = np.zeros((3, 3), dtype=np.uint8)
print('a:\n', a)

# assigning to the whole row
a[0] = 1
print('\na[0] = 1\n', a)

a = np.zeros((3, 3), dtype=np.uint8)

# assigning to a column
a[:,2] = 3.0
print('\na[:,0]:\n', a)





a:
 array([[0, 0, 0],
    [0, 0, 0],
    [0, 0, 0]], dtype=uint8)

a[0] = 1
 array([[1, 1, 1],
    [0, 0, 0],
    [0, 0, 0]], dtype=uint8)

a[:,0]:
 array([[0, 0, 3],
    [0, 0, 3],
    [0, 0, 3]], dtype=uint8)





Now, you should notice that we re-set the array a after the first
assignment. Do you care to see what happens, if we do not do that? Well,
here are the results:

# code to be run in micropython

from ulab import numpy as np

a = np.zeros((3, 3), dtype=np.uint8)
b = a[:,:]
# assign 1 to the first row
b[0] = 1

# assigning to the last column
b[:,2] = 3
print('a: ', a)





a:  array([[1, 1, 3],
    [0, 0, 3],
    [0, 0, 3]], dtype=uint8)





Note that both assignments involved b, and not a, yet, when we
print out a, its entries are updated. This proves our earlier
statement about the behaviour of views: in the statement
b = a[:,:] we simply created a view of a, and not a deep
copy of it, meaning that whenever we modify b, we actually modify
a, because the underlying data container of a and b are
shared between the two object. Having a single data container for two
seemingly different objects provides an extremely powerful way of
manipulating sub-sets of numerical data.

If you want to work on a copy of your data, you can use the .copy
method of the ndarray. The following snippet should drive the point
home:

# code to be run in micropython

from ulab import numpy as np

a = np.zeros((3, 3), dtype=np.uint8)
b = a.copy()

# get the address of the underlying data pointer

np.ndinfo(a)
print()
np.ndinfo(b)

# assign 1 to the first row of b, and do not touch a
b[0] = 1

print()
print('a: ', a)
print('='*20)
print('b: ', b)





class: ndarray
shape: (3, 3)
strides: (3, 1)
itemsize: 1
data pointer: 0x7ff737ea3220
type: uint8

class: ndarray
shape: (3, 3)
strides: (3, 1)
itemsize: 1
data pointer: 0x7ff737ea3340
type: uint8

a:  array([[0, 0, 0],
    [0, 0, 0],
    [0, 0, 0]], dtype=uint8)
====================
b:  array([[1, 1, 1],
    [0, 0, 0],
    [0, 0, 0]], dtype=uint8)





The .copy method can also be applied to views: below, a[0] is a
view of a, out of which we create a deep copy called b. This
is a row vector now. We can then do whatever we want to with b, and
that leaves a unchanged.

# code to be run in micropython

from ulab import numpy as np

a = np.zeros((3, 3), dtype=np.uint8)
b = a[0].copy()
print('b: ', b)
print('='*20)
# assign 1 to the first entry of b, and do not touch a
b[0] = 1
print('a: ', a)
print('='*20)
print('b: ', b)





b:  array([0, 0, 0], dtype=uint8)
====================
a:  array([[0, 0, 0],
    [0, 0, 0],
    [0, 0, 0]], dtype=uint8)
====================
b:  array([1, 0, 0], dtype=uint8)





The fact that the underlying data of a view is the same as that of the
original array has another important consequence, namely, that the
creation of a view is cheap. Both in terms of RAM, and execution time. A
view is really nothing but a short header with a data array that already
exists, and is filled up. Hence, creating the view requires only the
creation of its header. This operation is fast, and uses virtually no
RAM.





            

          

      

      

    

  

    
      
          
            
  
Numpy functions

This section of the manual discusses those functions that were adapted
from numpy. Starred functions accept complex arrays as arguments, if
the firmware was compiled with complex support.


	numpy.all*


	numpy.any*


	numpy.argmax


	numpy.argmin


	numpy.argsort


	numpy.asarray*


	numpy.clip


	numpy.compress*


	numpy.conjugate*


	numpy.convolve*


	numpy.delete


	numpy.diff


	numpy.dot


	numpy.equal


	numpy.flip*


	numpy.imag*


	numpy.interp


	numpy.isfinite


	numpy.isinf


	numpy.load


	numpy.loadtxt


	numpy.max


	numpy.maximum


	numpy.mean


	numpy.median


	numpy.min


	numpy.minimum


	numpy.nozero


	numpy.not_equal


	numpy.polyfit


	numpy.polyval


	numpy.real*


	numpy.roll


	numpy.save


	numpy.savetxt


	numpy.size


	numpy.sort


	numpy.sort_complex*


	numpy.std


	numpy.sum


	numpy.trace


	numpy.trapz


	numpy.where





all

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.all.html

The function takes one positional, and one keyword argument, the
axis, with a default value of None, and tests, whether all
array elements along the given axis evaluate to True. If the keyword
argument is None, the flattened array is inspected.

Elements of an array evaluate to True, if they are not equal to
zero, or the Boolean False. The return value if a Boolean
ndarray.

If the firmware was compiled with complex support, the function can
accept complex arrays.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(12)).reshape((3, 4))

print('\na:\n', a)

b = np.all(a)
print('\nall of the flattened array:\n', b)

c = np.all(a, axis=0)
print('\nall of a along 0th axis:\n', c)

d = np.all(a, axis=1)
print('\nall of a along 1st axis:\n', d)





a:
 array([[0.0, 1.0, 2.0, 3.0],
       [4.0, 5.0, 6.0, 7.0],
       [8.0, 9.0, 10.0, 11.0]], dtype=float64)

all of the flattened array:
 False

all of a along 0th axis:
 array([False, True, True, True], dtype=bool)

all of a along 1st axis:
 array([False, True, True], dtype=bool)







any

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.any.html

The function takes one positional, and one keyword argument, the
axis, with a default value of None, and tests, whether any
array element along the given axis evaluates to True. If the keyword
argument is None, the flattened array is inspected.

Elements of an array evaluate to True, if they are not equal to
zero, or the Boolean False. The return value if a Boolean
ndarray.

If the firmware was compiled with complex support, the function can
accept complex arrays.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(12)).reshape((3, 4))

print('\na:\n', a)

b = np.any(a)
print('\nany of the flattened array:\n', b)

c = np.any(a, axis=0)
print('\nany of a along 0th axis:\n', c)

d = np.any(a, axis=1)
print('\nany of a along 1st axis:\n', d)





a:
 array([[0.0, 1.0, 2.0, 3.0],
       [4.0, 5.0, 6.0, 7.0],
       [8.0, 9.0, 10.0, 11.0]], dtype=float64)

any of the flattened array:
 True

any of a along 0th axis:
 array([True, True, True, True], dtype=bool)

any of a along 1st axis:
 array([True, True, True], dtype=bool)







argmax

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html

See numpy.max.



argmin

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html

See numpy.max.



argsort

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html

Similarly to sort, argsort takes a positional, and a
keyword argument, and returns an unsigned short index array of type
ndarray with the same dimensions as the input, or, if axis=None,
as a row vector with length equal to the number of elements in the input
(i.e., the flattened array). The indices in the output sort the input in
ascending order. The routine in argsort is the same as in sort,
therefore, the comments on computational expenses (time and RAM) also
apply. In particular, since no copy of the original data is required,
virtually no RAM beyond the output array is used.

Since the underlying container of the output array is of type
uint16_t, neither of the output dimensions should be larger than
65535. If that happens to be the case, the function will bail out with a
ValueError.

# code to be run in micropython

from ulab import numpy as np

a = np.array([[1, 12, 3, 0], [5, 3, 4, 1], [9, 11, 1, 8], [7, 10, 0, 1]], dtype=np.float)
print('\na:\n', a)
b = np.argsort(a, axis=0)
print('\na sorted along vertical axis:\n', b)

c = np.argsort(a, axis=1)
print('\na sorted along horizontal axis:\n', c)

c = np.argsort(a, axis=None)
print('\nflattened a sorted:\n', c)





a:
 array([[1.0, 12.0, 3.0, 0.0],
       [5.0, 3.0, 4.0, 1.0],
       [9.0, 11.0, 1.0, 8.0],
       [7.0, 10.0, 0.0, 1.0]], dtype=float64)

a sorted along vertical axis:
 array([[0, 1, 3, 0],
       [1, 3, 2, 1],
       [3, 2, 0, 3],
       [2, 0, 1, 2]], dtype=uint16)

a sorted along horizontal axis:
 array([[3, 0, 2, 1],
       [3, 1, 2, 0],
       [2, 3, 0, 1],
       [2, 3, 0, 1]], dtype=uint16)

Traceback (most recent call last):
  File "/dev/shm/micropython.py", line 12, in <module>
NotImplementedError: argsort is not implemented for flattened arrays





Since during the sorting, only the indices are shuffled, argsort
does not modify the input array, as one can verify this by the following
example:

# code to be run in micropython

from ulab import numpy as np

a = np.array([0, 5, 1, 3, 2, 4], dtype=np.uint8)
print('\na:\n', a)
b = np.argsort(a, axis=0)
print('\nsorting indices:\n', b)
print('\nthe original array:\n', a)





a:
 array([0, 5, 1, 3, 2, 4], dtype=uint8)

sorting indices:
 array([0, 2, 4, 3, 5, 1], dtype=uint16)

the original array:
 array([0, 5, 1, 3, 2, 4], dtype=uint8)







asarray

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.asarray.html

The function takes a single positional argument, and an optional keyword
argument, dtype, with a default value of None.

If the positional argument is an ndarray, and its dtypes is
identical to the value of the keyword argument, or if the keyword
argument is None, then the positional argument is simply returned.
If the original dtype, and the value of the keyword argument are
different, then a copy is returned, with appropriate dtype
conversion.

If the positional argument is an iterable, then the function is simply
an alias for array.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(9), dtype=np.uint8)
b = np.asarray(a)
c = np.asarray(a, dtype=np.int8)
print('a:{}'.format(a))
print('b:{}'.format(b))
print('a == b: {}'.format(a is b))

print('\nc:{}'.format(c))
print('a == c: {}'.format(a is c))





a:array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)
b:array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)
a == b: True

c:array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=int8)
a == c: False







clip

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html

Clips an array, i.e., values that are outside of an interval are clipped
to the interval edges. The function is equivalent to
maximum(a_min, minimum(a, a_max)) broadcasting takes place exactly
as in minimum. If the arrays are of different dtype,
the output is upcast as in Binary operators.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(9), dtype=np.uint8)
print('a:\t\t', a)
print('clipped:\t', np.clip(a, 3, 7))

b = 3 * np.ones(len(a), dtype=np.float)
print('\na:\t\t', a)
print('b:\t\t', b)
print('clipped:\t', np.clip(a, b, 7))





a:           array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)
clipped:     array([3, 3, 3, 3, 4, 5, 6, 7, 7], dtype=uint8)

a:           array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)
b:           array([3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0], dtype=float64)
clipped:     array([3.0, 3.0, 3.0, 3.0, 4.0, 5.0, 6.0, 7.0, 7.0], dtype=float64)







compress

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.compress.html

The function returns selected slices of an array along given axis. If
the axis keyword is None, the flattened array is used.

If the firmware was compiled with complex support, the function can
accept complex arguments.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(6)).reshape((2, 3))

print('a:\n', a)
print('\ncompress(a):\n', np.compress([0, 1], a, axis=0))





a:
 array([[0.0, 1.0, 2.0],
       [3.0, 4.0, 5.0]], dtype=float64)

compress(a):
 array([[3.0, 4.0, 5.0]], dtype=float64)







conjugate

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.conjugate.html

If the firmware was compiled with complex support, the function
calculates the complex conjugate of the input array. If the input array
is of real dtype, then the output is simply a copy, preserving the
dtype.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4], dtype=np.uint8)
b = np.array([1+1j, 2-2j, 3+3j, 4-4j], dtype=np.complex)

print('a:\t\t', a)
print('conjugate(a):\t', np.conjugate(a))
print()
print('b:\t\t', b)
print('conjugate(b):\t', np.conjugate(b))





a:           array([1, 2, 3, 4], dtype=uint8)
conjugate(a):        array([1, 2, 3, 4], dtype=uint8)

b:           array([1.0+1.0j, 2.0-2.0j, 3.0+3.0j, 4.0-4.0j], dtype=complex)
conjugate(b):        array([1.0-1.0j, 2.0+2.0j, 3.0-3.0j, 4.0+4.0j], dtype=complex)







convolve

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html

Returns the discrete, linear convolution of two one-dimensional arrays.

Only the full mode is supported, and the mode named parameter is
not accepted. Note that all other modes can be had by slicing a full
result.

If the firmware was compiled with complex support, the function can
accept complex arrays.

# code to be run in micropython

from ulab import numpy as np

x = np.array((1, 2, 3))
y = np.array((1, 10, 100, 1000))

print(np.convolve(x, y))





array([1.0, 12.0, 123.0, 1230.0, 2300.0, 3000.0], dtype=float64)







delete

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.delete.html

The function returns a new array with sub-arrays along an axis deleted.
It takes two positional arguments, the array, and the indices, which
will be removed, as well as the axis keyword argument with a default
value of None. If the axis is None, the will be flattened
first.

The second positional argument can be a scalar, or any micropython
iterable. Since range can also be passed in place of the indices,
slicing can be emulated. If the indices are negative, the elements are
counted from the end of the axis.

Note that the function creates a copy of the indices first, because it
is not guaranteed that the indices are ordered. Keep this in mind, when
working with large arrays.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(25), dtype=np.uint8).reshape((5,5))
print('a:\n', a)
print('\naxis = 0\n', np.delete(a, 2, axis=0))
print('\naxis = 1\n', np.delete(a, -2, axis=1))
print('\naxis = None\n', np.delete(a, [0, 1, 2, 22]))





a:
 array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24]], dtype=uint8)

axis = 0
 array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9],
       [15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24]], dtype=uint8)

axis = 1
 array([[0, 1, 2, 4],
       [5, 6, 7, 9],
       [10, 11, 12, 14],
       [15, 16, 17, 19],
       [20, 21, 22, 24]], dtype=uint8)

axis = None
 array([3, 4, 5, ..., 21, 23, 24], dtype=uint8)







diff

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.diff.html

The diff function returns the numerical derivative of the forward
scheme, or more accurately, the differences of an ndarray along a
given axis. The order of derivative can be stipulated with the n
keyword argument, which should be between 0, and 9. Default is 1. If
higher order derivatives are required, they can be gotten by repeated
calls to the function. The axis keyword argument should be -1 (last
axis, in ulab equivalent to the second axis, and this also happens
to be the default value), 0, or 1.

Beyond the output array, the function requires only a couple of bytes of
extra RAM for the differentiation stencil. (The stencil is an int8
array, one byte longer than n. This also explains, why the highest
order is 9: the coefficients of a ninth-order stencil all fit in signed
bytes, while 10 would require int16.) Note that as usual in
numerical differentiation (and also in numpy), the length of the
respective axis will be reduced by n after the operation. If n
is larger than, or equal to the length of the axis, an empty array will
be returned.

WARNING: the diff function does not implement the prepend
and append keywords that can be found in numpy.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(9), dtype=np.uint8)
a[3] = 10
print('a:\n', a)

print('\nfirst derivative:\n', np.diff(a, n=1))
print('\nsecond derivative:\n', np.diff(a, n=2))

c = np.array([[1, 2, 3, 4], [4, 3, 2, 1], [1, 4, 9, 16], [0, 0, 0, 0]])
print('\nc:\n', c)
print('\nfirst derivative, first axis:\n', np.diff(c, axis=0))
print('\nfirst derivative, second axis:\n', np.diff(c, axis=1))





a:
 array([0, 1, 2, 10, 4, 5, 6, 7, 8], dtype=uint8)

first derivative:
 array([1, 1, 8, 250, 1, 1, 1, 1], dtype=uint8)

second derivative:
 array([0, 249, 14, 249, 0, 0, 0], dtype=uint8)

c:
 array([[1.0, 2.0, 3.0, 4.0],
       [4.0, 3.0, 2.0, 1.0],
       [1.0, 4.0, 9.0, 16.0],
       [0.0, 0.0, 0.0, 0.0]], dtype=float64)

first derivative, first axis:
 array([[3.0, 1.0, -1.0, -3.0],
       [-3.0, 1.0, 7.0, 15.0],
       [-1.0, -4.0, -9.0, -16.0]], dtype=float64)

first derivative, second axis:
 array([[1.0, 1.0, 1.0],
       [-1.0, -1.0, -1.0],
       [3.0, 5.0, 7.0],
       [0.0, 0.0, 0.0]], dtype=float64)







dot

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html

WARNING: numpy applies upcasting rules for the multiplication of
matrices, while ulab simply returns a float matrix.

Once you can invert a matrix, you might want to know, whether the
inversion is correct. You can simply take the original matrix and its
inverse, and multiply them by calling the dot function, which takes
the two matrices as its arguments. If the matrix dimensions do not
match, the function raises a ValueError. The result of the
multiplication is expected to be the unit matrix, which is demonstrated
below.

# code to be run in micropython

from ulab import numpy as np

m = np.array([[1, 2, 3], [4, 5, 6], [7, 10, 9]], dtype=np.uint8)
n = np.linalg.inv(m)
print("m:\n", m)
print("\nm^-1:\n", n)
# this should be the unit matrix
print("\nm*m^-1:\n", np.dot(m, n))





m:
 array([[1, 2, 3],
       [4, 5, 6],
       [7, 10, 9]], dtype=uint8)

m^-1:
 array([[-1.25, 1.0, -0.25],
       [0.4999999999999998, -1.0, 0.5],
       [0.4166666666666668, 0.3333333333333333, -0.25]], dtype=float64)

m*m^-1:
 array([[1.0, 0.0, 0.0],
       [4.440892098500626e-16, 1.0, 0.0],
       [8.881784197001252e-16, 0.0, 1.0]], dtype=float64)





Note that for matrix multiplication you don’t necessarily need square
matrices, it is enough, if their dimensions are compatible (i.e., the
the left-hand-side matrix has as many columns, as does the
right-hand-side matrix rows):

# code to be run in micropython

from ulab import numpy as np

m = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=np.uint8)
n = np.array([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=np.uint8)
print(m)
print(n)
print(np.dot(m, n))





array([[1, 2, 3, 4],
       [5, 6, 7, 8]], dtype=uint8)
array([[1, 2],
       [3, 4],
       [5, 6],
       [7, 8]], dtype=uint8)
array([[50.0, 60.0],
       [114.0, 140.0]], dtype=float64)







equal

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.equal.html

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.not_equal.html

In micropython, equality of arrays or scalars can be established by
utilising the ==, !=, <, >, <=, or => binary
operators. In circuitpython, == and != will produce
unexpected results. In order to avoid this discrepancy, and to maintain
compatibility with numpy, ulab implements the equal and
not_equal operators that return the same results, irrespective of
the python implementation.

These two functions take two ndarrays, or scalars as their
arguments. No keyword arguments are implemented.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(9))
b = np.zeros(9)

print('a: ', a)
print('b: ', b)
print('\na == b: ', np.equal(a, b))
print('a != b: ', np.not_equal(a, b))

# comparison with scalars
print('a == 2: ', np.equal(a, 2))





a:  array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64)
b:  array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], dtype=float64)

a == b:  array([True, False, False, False, False, False, False, False, False], dtype=bool)
a != b:  array([False, True, True, True, True, True, True, True, True], dtype=bool)
a == 2:  array([False, False, True, False, False, False, False, False, False], dtype=bool)







flip

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html

The flip function takes one positional, an ndarray, and one
keyword argument, axis = None, and reverses the order of elements
along the given axis. If the keyword argument is None, the matrix’
entries are flipped along all axes. flip returns a new copy of the
array.

If the firmware was compiled with complex support, the function can
accept complex arrays.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4, 5])
print("a: \t", a)
print("a flipped:\t", np.flip(a))

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.uint8)
print("\na flipped horizontally\n", np.flip(a, axis=1))
print("\na flipped vertically\n", np.flip(a, axis=0))
print("\na flipped horizontally+vertically\n", np.flip(a))





a:   array([1.0, 2.0, 3.0, 4.0, 5.0], dtype=float64)
a flipped:   array([5.0, 4.0, 3.0, 2.0, 1.0], dtype=float64)

a flipped horizontally
 array([[3, 2, 1],
       [6, 5, 4],
       [9, 8, 7]], dtype=uint8)

a flipped vertically
 array([[7, 8, 9],
       [4, 5, 6],
       [1, 2, 3]], dtype=uint8)

a flipped horizontally+vertically
 array([9, 8, 7, 6, 5, 4, 3, 2, 1], dtype=uint8)







imag

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.imag.html

The imag function returns the imaginary part of an array, or scalar.
It cannot accept a generic iterable as its argument. The function is
defined only, if the firmware was compiled with complex support.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3], dtype=np.uint16)
print("a:\t\t", a)
print("imag(a):\t", np.imag(a))

b = np.array([1, 2+1j, 3-1j], dtype=np.complex)
print("\nb:\t\t", b)
print("imag(b):\t", np.imag(b))





a:           array([1, 2, 3], dtype=uint16)
imag(a):     array([0, 0, 0], dtype=uint16)

b:           array([1.0+0.0j, 2.0+1.0j, 3.0-1.0j], dtype=complex)
imag(b):     array([0.0, 1.0, -1.0], dtype=float64)







interp

numpy: https://docs.scipy.org/doc/numpy/numpy.interp

The interp function returns the linearly interpolated values of a
one-dimensional numerical array. It requires three positional
arguments,x, at which the interpolated values are evaluated,
xp, the array of the independent data variable, and fp, the
array of the dependent values of the data. xp must be a
monotonically increasing sequence of numbers.

Two keyword arguments, left, and right can also be supplied;
these determine the return values, if x < xp[0], and x > xp[-1],
respectively. If these arguments are not supplied, left, and
right default to fp[0], and fp[-1], respectively.

# code to be run in micropython

from ulab import numpy as np

x = np.array([1, 2, 3, 4, 5]) - 0.2
xp = np.array([1, 2, 3, 4])
fp = np.array([1, 2, 3, 5])

print(x)
print(np.interp(x, xp, fp))
print(np.interp(x, xp, fp, left=0.0))
print(np.interp(x, xp, fp, right=10.0))





array([0.8, 1.8, 2.8, 3.8, 4.8], dtype=float64)
array([1.0, 1.8, 2.8, 4.6, 5.0], dtype=float64)
array([0.0, 1.8, 2.8, 4.6, 5.0], dtype=float64)
array([1.0, 1.8, 2.8, 4.6, 10.0], dtype=float64)







isfinite

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html

Returns a Boolean array of the same shape as the input, or a
True/False, if the input is a scalar. In the return value, all
elements are True at positions, where the input value was finite.
Integer types are automatically finite, therefore, if the input is of
integer type, the output will be the True tensor.

# code to be run in micropython

from ulab import numpy as np

print('isfinite(0): ', np.isfinite(0))

a = np.array([1, 2, np.nan])
print('\n' + '='*20)
print('a:\n', a)
print('\nisfinite(a):\n', np.isfinite(a))

b = np.array([1, 2, np.inf])
print('\n' + '='*20)
print('b:\n', b)
print('\nisfinite(b):\n', np.isfinite(b))

c = np.array([1, 2, 3], dtype=np.uint16)
print('\n' + '='*20)
print('c:\n', c)
print('\nisfinite(c):\n', np.isfinite(c))





isfinite(0):  True

====================
a:
 array([1.0, 2.0, nan], dtype=float64)

isfinite(a):
 array([True, True, False], dtype=bool)

====================
b:
 array([1.0, 2.0, inf], dtype=float64)

isfinite(b):
 array([True, True, False], dtype=bool)

====================
c:
 array([1, 2, 3], dtype=uint16)

isfinite(c):
 array([True, True, True], dtype=bool)







isinf

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.isinf.html

Similar to isfinite, but the output is True at
positions, where the input is infinite. Integer types return the
False tensor.

# code to be run in micropython

from ulab import numpy as np

print('isinf(0): ', np.isinf(0))

a = np.array([1, 2, np.nan])
print('\n' + '='*20)
print('a:\n', a)
print('\nisinf(a):\n', np.isinf(a))

b = np.array([1, 2, np.inf])
print('\n' + '='*20)
print('b:\n', b)
print('\nisinf(b):\n', np.isinf(b))

c = np.array([1, 2, 3], dtype=np.uint16)
print('\n' + '='*20)
print('c:\n', c)
print('\nisinf(c):\n', np.isinf(c))





isinf(0):  False

====================
a:
 array([1.0, 2.0, nan], dtype=float64)

isinf(a):
 array([False, False, False], dtype=bool)

====================
b:
 array([1.0, 2.0, inf], dtype=float64)

isinf(b):
 array([False, False, True], dtype=bool)

====================
c:
 array([1, 2, 3], dtype=uint16)

isinf(c):
 array([False, False, False], dtype=bool)







load

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html

The function reads data from a file in numpy’s
platform-independent
format [https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html#module-numpy.lib.format],
and returns the generated array. If the endianness of the data in the
file and the microcontroller differ, the bytes are automatically
swapped.

# code to be run in micropython

from ulab import numpy as np

a = np.load('a.npy')
print(a)





array([[0.0, 1.0, 2.0, 3.0, 4.0],
       [5.0, 6.0, 7.0, 8.0, 9.0],
       [10.0, 11.0, 12.0, 13.0, 14.0],
       [15.0, 16.0, 17.0, 18.0, 19.0],
       [20.0, 21.0, 22.0, 23.0, 24.0]], dtype=float64)







loadtxt

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html

The function reads data from a text file, and returns the generated
array. It takes a file name as the single positional argument, and the
following keyword arguments:


	comments='#'


	dtype=float


	delimiter=','


	max_rows (with a default of all rows)


	skip_rows=0


	usecols (with a default of all columns)




If dtype is supplied and is not float, the data entries will be
converted to the appropriate integer type by rounding the values.

# code to be run in micropython

from ulab import numpy as np

print('read all data')
print(np.loadtxt('loadtxt.dat'))

print('\nread maximum 5 rows (first row is a comment line)')
print(np.loadtxt('loadtxt.dat', max_rows=5))

print('\nread maximum 5 rows, convert dtype (first row is a comment line)')
print(np.loadtxt('loadtxt.dat', max_rows=5, dtype=np.uint8))

print('\nskip the first 3 rows, convert dtype (first row is a comment line)')
print(np.loadtxt('loadtxt.dat', skiprows=3, dtype=np.uint8))





read all data
array([[0.0, 1.0, 2.0, 3.0],
       [4.0, 5.0, 6.0, 7.0],
       [8.0, 9.0, 10.0, 11.0],
       [12.0, 13.0, 14.0, 15.0],
       [16.0, 17.0, 18.0, 19.0],
       [20.0, 21.0, 22.0, 23.0],
       [24.0, 25.0, 26.0, 27.0],
       [28.00000000000001, 29.0, 30.0, 31.0],
       [32.0, 33.0, 34.00000000000001, 35.0]], dtype=float64)

read maximum 5 rows (first row is a comment line)
array([[0.0, 1.0, 2.0, 3.0],
       [4.0, 5.0, 6.0, 7.0],
       [8.0, 9.0, 10.0, 11.0],
       [12.0, 13.0, 14.0, 15.0]], dtype=float64)

read maximum 5 rows, convert dtype (first row is a comment line)
array([[0, 1, 2, 3],
       [4, 5, 6, 7],
       [8, 9, 10, 11],
       [12, 13, 14, 15]], dtype=uint8)

skip the first 3 rows, convert dtype (first row is a comment line)
array([[8, 9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23],
       [24, 25, 26, 27],
       [28, 29, 30, 31],
       [32, 33, 34, 35]], dtype=uint8)







mean

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html

If the axis keyword is not specified, it assumes the default value of
None, and returns the result of the computation for the flattened
array. Otherwise, the calculation is along the given axis.

# code to be run in micropython

from ulab import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print('a: \n', a)
print('mean, flat: ', np.mean(a))
print('mean, horizontal: ', np.mean(a, axis=1))
print('mean, vertical: ', np.mean(a, axis=0))





a:
 array([[1.0, 2.0, 3.0],
       [4.0, 5.0, 6.0],
       [7.0, 8.0, 9.0]], dtype=float64)
mean, flat:  5.0
mean, horizontal:  array([2.0, 5.0, 8.0], dtype=float64)
mean, vertical:  array([4.0, 5.0, 6.0], dtype=float64)







max

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.max.html

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.min.html

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html

WARNING: Difference to numpy: the out keyword argument is
not implemented.

These functions follow the same pattern, and work with generic
iterables, and ndarrays. min, and max return the minimum
or maximum of a sequence. If the input array is two-dimensional, the
axis keyword argument can be supplied, in which case the
minimum/maximum along the given axis will be returned. If axis=None
(this is also the default value), the minimum/maximum of the flattened
array will be determined.

argmin/argmax return the position (index) of the minimum/maximum in
the sequence.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 0, 1, 10])
print('a:', a)
print('min of a:', np.min(a))
print('argmin of a:', np.argmin(a))

b = np.array([[1, 2, 0], [1, 10, -1]])
print('\nb:\n', b)
print('min of b (flattened):', np.min(b))
print('min of b (axis=0):', np.min(b, axis=0))
print('min of b (axis=1):', np.min(b, axis=1))





a: array([1.0, 2.0, 0.0, 1.0, 10.0], dtype=float64)
min of a: 0.0
argmin of a: 2

b:
 array([[1.0, 2.0, 0.0],
       [1.0, 10.0, -1.0]], dtype=float64)
min of b (flattened): -1.0
min of b (axis=0): array([1.0, 2.0, -1.0], dtype=float64)
min of b (axis=1): array([0.0, -1.0], dtype=float64)







median

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.median.html

The function computes the median along the specified axis, and returns
the median of the array elements. If the axis keyword argument is
None, the arrays is flattened first. The dtype of the results is
always float.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(12), dtype=np.int8).reshape((3, 4))
print('a:\n', a)
print('\nmedian of the flattened array: ', np.median(a))
print('\nmedian along the vertical axis: ', np.median(a, axis=0))
print('\nmedian along the horizontal axis: ', np.median(a, axis=1))





a:
 array([[0, 1, 2, 3],
       [4, 5, 6, 7],
       [8, 9, 10, 11]], dtype=int8)

median of the flattened array:  5.5

median along the vertical axis:  array([4.0, 5.0, 6.0, 7.0], dtype=float64)

median along the horizontal axis:  array([1.5, 5.5, 9.5], dtype=float64)







min

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.min.html

See numpy.max.



minimum

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.minimum.html

See numpy.maximum



maximum

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.maximum.html

Returns the maximum of two arrays, or two scalars, or an array, and a
scalar. If the arrays are of different dtype, the output is upcast
as in Binary operators. If both inputs are
scalars, a scalar is returned. Only positional arguments are
implemented.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4, 5], dtype=np.uint8)
b = np.array([5, 4, 3, 2, 1], dtype=np.float)
print('minimum of a, and b:')
print(np.minimum(a, b))

print('\nmaximum of a, and b:')
print(np.maximum(a, b))

print('\nmaximum of 1, and 5.5:')
print(np.maximum(1, 5.5))





minimum of a, and b:
array([1.0, 2.0, 3.0, 2.0, 1.0], dtype=float64)

maximum of a, and b:
array([5.0, 4.0, 3.0, 4.0, 5.0], dtype=float64)

maximum of 1, and 5.5:
5.5







nonzero

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.nonzero.html

nonzero returns the indices of the elements of an array that are not
zero. If the number of dimensions of the array is larger than one, a
tuple of arrays is returned, one for each dimension, containing the
indices of the non-zero elements in that dimension.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(9)) - 5
print('a:\n', a)
print(np.nonzero(a))

a = a.reshape((3,3))
print('\na:\n', a)
print(np.nonzero(a))





a:
 array([-5.0, -4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], dtype=float64)
(array([0, 1, 2, 3, 4, 6, 7, 8], dtype=uint16),)

a:
 array([[-5.0, -4.0, -3.0],
       [-2.0, -1.0, 0.0],
       [1.0, 2.0, 3.0]], dtype=float64)
(array([0, 0, 0, 1, 1, 2, 2, 2], dtype=uint16), array([0, 1, 2, 0, 1, 0, 1, 2], dtype=uint16))







not_equal

See numpy.equal.



polyfit

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html

polyfit takes two, or three arguments. The last one is the degree of
the polynomial that will be fitted, the last but one is an array or
iterable with the y (dependent) values, and the first one, an array
or iterable with the x (independent) values, can be dropped. If that
is the case, x will be generated in the function as
range(len(y)).

If the lengths of x, and y are not the same, the function raises
a ValueError.

# code to be run in micropython

from ulab import numpy as np

x = np.array([0, 1, 2, 3, 4, 5, 6])
y = np.array([9, 4, 1, 0, 1, 4, 9])
print('independent values:\t', x)
print('dependent values:\t', y)
print('fitted values:\t\t', np.polyfit(x, y, 2))

# the same with missing x
print('\ndependent values:\t', y)
print('fitted values:\t\t', np.polyfit(y, 2))





independent values:  array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], dtype=float64)
dependent values:    array([9.0, 4.0, 1.0, 0.0, 1.0, 4.0, 9.0], dtype=float64)
fitted values:               array([1.0, -6.0, 9.000000000000004], dtype=float64)

dependent values:    array([9.0, 4.0, 1.0, 0.0, 1.0, 4.0, 9.0], dtype=float64)
fitted values:               array([1.0, -6.0, 9.000000000000004], dtype=float64)






Execution time

polyfit is based on the inversion of a matrix (there is more on the
background in https://en.wikipedia.org/wiki/Polynomial_regression), and
it requires the intermediate storage of 2*N*(deg+1) floats, where
N is the number of entries in the input array, and deg is the
fit’s degree. The additional computation costs of the matrix inversion
discussed in linalg.inv also apply. The example from above
needs around 150 microseconds to return:

# code to be run in micropython

from ulab import numpy as np

@timeit
def time_polyfit(x, y, n):
    return np.polyfit(x, y, n)

x = np.array([0, 1, 2, 3, 4, 5, 6])
y = np.array([9, 4, 1, 0, 1, 4, 9])

time_polyfit(x, y, 2)





execution time:  153  us








polyval

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyval.html

polyval takes two arguments, both arrays or generic micropython
iterables returning scalars.

# code to be run in micropython

from ulab import numpy as np

p = [1, 1, 1, 0]
x = [0, 1, 2, 3, 4]
print('coefficients: ', p)
print('independent values: ', x)
print('\nvalues of p(x): ', np.polyval(p, x))

# the same works with one-dimensional ndarrays
a = np.array(x)
print('\nndarray (a): ', a)
print('value of p(a): ', np.polyval(p, a))





coefficients:  [1, 1, 1, 0]
independent values:  [0, 1, 2, 3, 4]

values of p(x):  array([0.0, 3.0, 14.0, 39.0, 84.0], dtype=float64)

ndarray (a):  array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=float64)
value of p(a):  array([0.0, 3.0, 14.0, 39.0, 84.0], dtype=float64)







real

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.real.html

The real function returns the real part of an array, or scalar. It
cannot accept a generic iterable as its argument. The function is
defined only, if the firmware was compiled with complex support.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3], dtype=np.uint16)
print("a:\t\t", a)
print("real(a):\t", np.real(a))

b = np.array([1, 2+1j, 3-1j], dtype=np.complex)
print("\nb:\t\t", b)
print("real(b):\t", np.real(b))





a:           array([1, 2, 3], dtype=uint16)
real(a):     array([1, 2, 3], dtype=uint16)

b:           array([1.0+0.0j, 2.0+1.0j, 3.0-1.0j], dtype=complex)
real(b):     array([1.0, 2.0, 3.0], dtype=float64)







roll

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.roll.html

The roll function shifts the content of a vector by the positions given
as the second argument. If the axis keyword is supplied, the shift
is applied to the given axis.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4, 5, 6, 7, 8])
print("a:\t\t\t", a)

a = np.roll(a, 2)
print("a rolled to the left:\t", a)

# this should be the original vector
a = np.roll(a, -2)
print("a rolled to the right:\t", a)





a:                   array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64)
a rolled to the left:        array([7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], dtype=float64)
a rolled to the right:       array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64)





Rolling works with matrices, too. If the axis keyword is 0, the
matrix is rolled along its vertical axis, otherwise, horizontally.

Horizontal rolls are faster, because they require fewer steps, and
larger memory chunks are copied, however, they also require more RAM:
basically the whole row must be stored internally. Most expensive are
the None keyword values, because with axis = None, the array is
flattened first, hence the row’s length is the size of the whole matrix.

Vertical rolls require two internal copies of single columns.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(12)).reshape((3, 4))
print("a:\n", a)
a = np.roll(a, 2, axis=0)
print("\na rolled up:\n", a)

a = np.array(range(12)).reshape((3, 4))
print("a:\n", a)
a = np.roll(a, -1, axis=1)
print("\na rolled to the left:\n", a)

a = np.array(range(12)).reshape((3, 4))
print("a:\n", a)
a = np.roll(a, 1, axis=None)
print("\na rolled with None:\n", a)





a:
 array([[0.0, 1.0, 2.0, 3.0],
       [4.0, 5.0, 6.0, 7.0],
       [8.0, 9.0, 10.0, 11.0]], dtype=float64)

a rolled up:
 array([[4.0, 5.0, 6.0, 7.0],
       [8.0, 9.0, 10.0, 11.0],
       [0.0, 1.0, 2.0, 3.0]], dtype=float64)
a:
 array([[0.0, 1.0, 2.0, 3.0],
       [4.0, 5.0, 6.0, 7.0],
       [8.0, 9.0, 10.0, 11.0]], dtype=float64)

a rolled to the left:
 array([[1.0, 2.0, 3.0, 0.0],
       [5.0, 6.0, 7.0, 4.0],
       [9.0, 10.0, 11.0, 8.0]], dtype=float64)
a:
 array([[0.0, 1.0, 2.0, 3.0],
       [4.0, 5.0, 6.0, 7.0],
       [8.0, 9.0, 10.0, 11.0]], dtype=float64)

a rolled with None:
 array([[11.0, 0.0, 1.0, 2.0],
       [3.0, 4.0, 5.0, 6.0],
       [7.0, 8.0, 9.0, 10.0]], dtype=float64)







save

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.save.html

With the help of this function, numerical array can be saved in
numpy’s platform-independent
format [https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html#module-numpy.lib.format].

The function takes two positional arguments, the name of the output
file, and the array.

# code to be run in CPython

a = np.array(range(25)).reshape((5, 5))
np.save('a.npy', a)







savetxt

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savetxt.html

With the help of this function, numerical array can be saved in a text
file. The function takes two positional arguments, the name of the
output file, and the array, and also implements the comments='#'
delimiter=' ', the header='', and footer='' keyword
arguments. The input is treated as of type float, i.e., the output
is always in the floating point representation.

# code to be run in micropython

from ulab import numpy as np

a = np.array(range(12), dtype=np.uint8).reshape((3, 4))
np.savetxt('savetxt.dat', a)

with open('savetxt.dat', 'r') as fin:
    print(fin.read())

np.savetxt('savetxt.dat', a,
           comments='!',
           delimiter=';',
           header='col1;col2;col3;col4',
           footer='saved data')

with open('savetxt.dat', 'r') as fin:
    print(fin.read())





0.000000000000000 1.000000000000000 2.000000000000000 3.000000000000000
4.000000000000000 5.000000000000000 6.000000000000000 7.000000000000000
8.000000000000000 9.000000000000000 10.000000000000000 11.000000000000000

!col1;col2;col3;col4
0.000000000000000;1.000000000000000;2.000000000000000;3.000000000000000
4.000000000000000;5.000000000000000;6.000000000000000;7.000000000000000
8.000000000000000;9.000000000000000;10.000000000000000;11.000000000000000
!saved data







size

The function takes a single positional argument, and an optional keyword
argument, axis, with a default value of None, and returns the
size of an array along that axis. If axis is None, the total
length of the array (the product of the elements of its shape) is
returned.

# code to be run in micropython

from ulab import numpy as np

a = np.ones((2, 3))

print(a)
print('size(a, axis=0): ', np.size(a, axis=0))
print('size(a, axis=1): ', np.size(a, axis=1))
print('size(a, axis=None): ', np.size(a, axis=None))





array([[1.0, 1.0, 1.0],
       [1.0, 1.0, 1.0]], dtype=float64)
size(a, axis=0):  2
size(a, axis=1):  3
size(a, axis=None):  6







sort

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html

The sort function takes an ndarray, and sorts its elements in ascending
order along the specified axis using a heap sort algorithm. As opposed
to the .sort() method discussed earlier, this function creates a
copy of its input before sorting, and at the end, returns this copy.
Sorting takes place in place, without auxiliary storage. The axis
keyword argument takes on the possible values of -1 (the last axis, in
ulab equivalent to the second axis, and this also happens to be the
default value), 0, 1, or None. The first three cases are identical
to those in diff, while the last one flattens the array
before sorting.

If descending order is required, the result can simply be flipped,
see flip.

WARNING: numpy defines the kind, and order keyword
arguments that are not implemented here. The function in ulab always
uses heap sort, and since ulab does not have the concept of data
fields, the order keyword argument would have no meaning.

# code to be run in micropython

from ulab import numpy as np

a = np.array([[1, 12, 3, 0], [5, 3, 4, 1], [9, 11, 1, 8], [7, 10, 0, 1]], dtype=np.float)
print('\na:\n', a)
b = np.sort(a, axis=0)
print('\na sorted along vertical axis:\n', b)

c = np.sort(a, axis=1)
print('\na sorted along horizontal axis:\n', c)

c = np.sort(a, axis=None)
print('\nflattened a sorted:\n', c)





a:
 array([[1.0, 12.0, 3.0, 0.0],
       [5.0, 3.0, 4.0, 1.0],
       [9.0, 11.0, 1.0, 8.0],
       [7.0, 10.0, 0.0, 1.0]], dtype=float64)

a sorted along vertical axis:
 array([[1.0, 3.0, 0.0, 0.0],
       [5.0, 10.0, 1.0, 1.0],
       [7.0, 11.0, 3.0, 1.0],
       [9.0, 12.0, 4.0, 8.0]], dtype=float64)

a sorted along horizontal axis:
 array([[0.0, 1.0, 3.0, 12.0],
       [1.0, 3.0, 4.0, 5.0],
       [1.0, 8.0, 9.0, 11.0],
       [0.0, 1.0, 7.0, 10.0]], dtype=float64)

flattened a sorted:
 array([0.0, 0.0, 1.0, ..., 10.0, 11.0, 12.0], dtype=float64)





Heap sort requires \(\sim N\log N\) operations, and notably, the
worst case costs only 20% more time than the average. In order to get an
order-of-magnitude estimate, we will take the sine of 1000 uniformly
spaced numbers between 0, and two pi, and sort them:

# code to be run in micropython

from ulab import numpy as np

@timeit
def sort_time(array):
    return nup.sort(array)

b = np.sin(np.linspace(0, 6.28, num=1000))
print('b: ', b)
sort_time(b)
print('\nb sorted:\n', b)







sort_complex

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.sort_complex.html

If the firmware was compiled with complex support, the functions sorts
the input array first according to its real part, and then the imaginary
part. The input must be a one-dimensional array. The output is always of
dtype complex, even if the input was real integer.

# code to be run in micropython

from ulab import numpy as np

a = np.array([5, 4, 3, 2, 1], dtype=np.int16)
print('a:\t\t\t', a)
print('sort_complex(a):\t', np.sort_complex(a))
print()

b = np.array([5, 4+3j, 4-2j, 0, 1j], dtype=np.complex)
print('b:\t\t\t', b)
print('sort_complex(b):\t', np.sort_complex(b))





a:                   array([5, 4, 3, 2, 1], dtype=int16)
sort_complex(a):     array([1.0+0.0j, 2.0+0.0j, 3.0+0.0j, 4.0+0.0j, 5.0+0.0j], dtype=complex)

b:                   array([5.0+0.0j, 4.0+3.0j, 4.0-2.0j, 0.0+0.0j, 0.0+1.0j], dtype=complex)
sort_complex(b):     array([0.0+0.0j, 0.0+1.0j, 4.0-2.0j, 4.0+3.0j, 5.0+0.0j], dtype=complex)







std

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html

If the axis keyword is not specified, it assumes the default value of
None, and returns the result of the computation for the flattened
array. Otherwise, the calculation is along the given axis.

# code to be run in micropython

from ulab import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print('a: \n', a)
print('sum, flat array: ', np.std(a))
print('std, vertical: ', np.std(a, axis=0))
print('std, horizonal: ', np.std(a, axis=1))





a:
 array([[1.0, 2.0, 3.0],
       [4.0, 5.0, 6.0],
       [7.0, 8.0, 9.0]], dtype=float64)
sum, flat array:  2.581988897471611
std, vertical:  array([2.449489742783178, 2.449489742783178, 2.449489742783178], dtype=float64)
std, horizonal:  array([0.8164965809277261, 0.8164965809277261, 0.8164965809277261], dtype=float64)







sum

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html

If the axis keyword is not specified, it assumes the default value of
None, and returns the result of the computation for the flattened
array. Otherwise, the calculation is along the given axis.

# code to be run in micropython

from ulab import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print('a: \n', a)

print('sum, flat array: ', np.sum(a))
print('sum, horizontal: ', np.sum(a, axis=1))
print('std, vertical: ', np.sum(a, axis=0))





a:
 array([[1.0, 2.0, 3.0],
       [4.0, 5.0, 6.0],
       [7.0, 8.0, 9.0]], dtype=float64)
sum, flat array:  45.0
sum, horizontal:  array([6.0, 15.0, 24.0], dtype=float64)
std, vertical:  array([12.0, 15.0, 18.0], dtype=float64)







trace

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.trace.html

The trace function returns the sum of the diagonal elements of a
square matrix. If the input argument is not a square matrix, an
exception will be raised.

The scalar so returned will inherit the type of the input array, i.e.,
integer arrays have integer trace, and floating point arrays a floating
point trace.

# code to be run in micropython

from ulab import numpy as np

a = np.array([[25, 15, -5], [15, 18,  0], [-5,  0, 11]], dtype=np.int8)
print('a: ', a)
print('\ntrace of a: ', np.trace(a))

b = np.array([[25, 15, -5], [15, 18,  0], [-5,  0, 11]], dtype=np.float)

print('='*20 + '\nb: ', b)
print('\ntrace of b: ', np.trace(b))





a:  array([[25, 15, -5],
       [15, 18, 0],
       [-5, 0, 11]], dtype=int8)

trace of a:  54
====================
b:  array([[25.0, 15.0, -5.0],
       [15.0, 18.0, 0.0],
       [-5.0, 0.0, 11.0]], dtype=float64)

trace of b:  54.0







trapz

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.trapz.html

The function takes one or two one-dimensional ndarrays, and
integrates the dependent values (y) using the trapezoidal rule. If
the independent variable (x) is given, that is taken as the sample
points corresponding to y.

# code to be run in micropython

from ulab import numpy as np

x = np.linspace(0, 9, num=10)
y = x*x

print('x: ',  x)
print('y: ',  y)
print('============================')
print('integral of y: ', np.trapz(y))
print('integral of y at x: ', np.trapz(y, x=x))





x:  array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0], dtype=float64)
y:  array([0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0], dtype=float64)
============================
integral of y:  244.5
integral of y at x:  244.5







where

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.where.html

The function takes three positional arguments, condition, x, and
y, and returns a new ndarray, whose values are taken from either
x, or y, depending on the truthness of condition. The three
arguments are broadcast together, and the function raises a
ValueError exception, if broadcasting is not possible.

The function is implemented for ndarrays only: other iterable
types can be passed after casting them to an ndarray by calling the
array constructor.

If the dtypes of x, and y differ, the output is upcast as
discussed earlier.

Note that the condition is expanded into an Boolean ndarray.
This means that the storage required to hold the condition should be
taken into account, whenever the function is called.

The following example returns an ndarray of length 4, with 1 at
positions, where condition is smaller than 3, and with -1 otherwise.

# code to be run in micropython


from ulab import numpy as np

condition = np.array([1, 2, 3, 4], dtype=np.uint8)
print(np.where(condition < 3, 1, -1))





array([1, 1, -1, -1], dtype=int16)





The next snippet shows, how values from two arrays can be fed into the
output:

# code to be run in micropython


from ulab import numpy as np

condition = np.array([1, 2, 3, 4], dtype=np.uint8)
x = np.array([11, 22, 33, 44], dtype=np.uint8)
y = np.array([1, 2, 3, 4], dtype=np.uint8)
print(np.where(condition < 3, x, y))





array([11, 22, 3, 4], dtype=uint8)









            

          

      

      

    

  

    
      
          
            
  
Universal functions

Standard mathematical functions can be calculated on any scalar,
scalar-valued iterable (ranges, lists, tuples containing numbers), and
on ndarrays without having to change the call signature. In all
cases the functions return a new ndarray of typecode float
(since these functions usually generate float values, anyway). The only
exceptions to this rule are the exp, and sqrt functions, which,
if ULAB_SUPPORTS_COMPLEX is set to 1 in
ulab.h [https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h],
can return complex arrays, depending on the argument. All functions
execute faster with ndarray arguments than with iterables, because
the values of the input vector can be extracted faster.

At present, the following functions are supported (starred functions can
operate on, or can return complex arrays):

acos, acosh, arctan2, around, asin, asinh,
atan, arctan2, atanh, ceil, cos, degrees,
exp*, expm1, floor, log, log10, log2,
radians, sin, sinh, sqrt*, tan, tanh.

These functions are applied element-wise to the arguments, thus, e.g.,
the exponential of a matrix cannot be calculated in this way, only the
exponential of the matrix entries.

# code to be run in micropython

from ulab import numpy as np

a = range(9)
b = np.array(a)

# works with ranges, lists, tuples etc.
print('a:\t', a)
print('exp(a):\t', np.exp(a))

# with 1D arrays
print('\n=============\nb:\n', b)
print('exp(b):\n', np.exp(b))

# as well as with matrices
c = np.array(range(9)).reshape((3, 3))
print('\n=============\nc:\n', c)
print('exp(c):\n', np.exp(c))





a:   range(0, 9)
exp(a):      array([1.0, 2.718281828459045, 7.38905609893065, 20.08553692318767, 54.59815003314424, 148.4131591025766, 403.4287934927351, 1096.633158428459, 2980.957987041728], dtype=float64)

=============
b:
 array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64)
exp(b):
 array([1.0, 2.718281828459045, 7.38905609893065, 20.08553692318767, 54.59815003314424, 148.4131591025766, 403.4287934927351, 1096.633158428459, 2980.957987041728], dtype=float64)

=============
c:
 array([[0.0, 1.0, 2.0],
       [3.0, 4.0, 5.0],
       [6.0, 7.0, 8.0]], dtype=float64)
exp(c):
 array([[1.0, 2.718281828459045, 7.38905609893065],
       [20.08553692318767, 54.59815003314424, 148.4131591025766],
       [403.4287934927351, 1096.633158428459, 2980.957987041728]], dtype=float64)






Computation expenses

The overhead for calculating with micropython iterables is quite
significant: for the 1000 samples below, the difference is more than 800
microseconds, because internally the function has to create the
ndarray for the output, has to fetch the iterable’s items of unknown
type, and then convert them to floats. All these steps are skipped for
ndarrays, because these pieces of information are already known.

Doing the same with list comprehension requires 30 times more time
than with the ndarray, which would become even more, if we converted
the resulting list to an ndarray.

# code to be run in micropython

from ulab import numpy as np
import math

a = [0]*1000
b = np.array(a)

@timeit
def timed_vector(iterable):
    return np.exp(iterable)

@timeit
def timed_list(iterable):
    return [math.exp(i) for i in iterable]

print('iterating over ndarray in ulab')
timed_vector(b)

print('\niterating over list in ulab')
timed_vector(a)

print('\niterating over list in python')
timed_list(a)





iterating over ndarray in ulab
execution time:  441  us

iterating over list in ulab
execution time:  1266  us

iterating over list in python
execution time:  11379  us







arctan2

numpy:
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.arctan2.html

The two-argument inverse tangent function is also part of the vector
sub-module. The function implements broadcasting as discussed in the
section on ndarrays. Scalars (micropython integers or floats)
are also allowed.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2.2, 33.33, 444.444])
print('a:\n', a)
print('\narctan2(a, 1.0)\n', np.arctan2(a, 1.0))
print('\narctan2(1.0, a)\n', np.arctan2(1.0, a))
print('\narctan2(a, a): \n', np.arctan2(a, a))





a:
 array([1.0, 2.2, 33.33, 444.444], dtype=float64)

arctan2(a, 1.0)
 array([0.7853981633974483, 1.14416883366802, 1.5408023243361, 1.568546328341769], dtype=float64)

arctan2(1.0, a)
 array([0.7853981633974483, 0.426627493126876, 0.02999400245879636, 0.002249998453127392], dtype=float64)

arctan2(a, a):
 array([0.7853981633974483, 0.7853981633974483, 0.7853981633974483, 0.7853981633974483], dtype=float64)







around

numpy:
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.around.html

numpy’s around function can also be found in the vector
sub-module. The function implements the decimals keyword argument
with default value 0. The first argument must be an ndarray. If
this is not the case, the function raises a TypeError exception.
Note that numpy accepts general iterables. The out keyword
argument known from numpy is not accepted. The function always
returns an ndarray of type mp_float_t.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2.2, 33.33, 444.444])
print('a:\t\t', a)
print('\ndecimals = 0\t', np.around(a, decimals=0))
print('\ndecimals = 1\t', np.around(a, decimals=1))
print('\ndecimals = -1\t', np.around(a, decimals=-1))





a:           array([1.0, 2.2, 33.33, 444.444], dtype=float64)

decimals = 0         array([1.0, 2.0, 33.0, 444.0], dtype=float64)

decimals = 1         array([1.0, 2.2, 33.3, 444.4], dtype=float64)

decimals = -1        array([0.0, 0.0, 30.0, 440.0], dtype=float64)







exp

If ULAB_SUPPORTS_COMPLEX is set to 1 in
ulab.h [https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h],
the exponential function can also take complex arrays as its argument,
in which case the return value is also complex.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3])
print('a:\t\t', a)
print('exp(a):\t\t', np.exp(a))
print()

b = np.array([1+1j, 2+2j, 3+3j], dtype=np.complex)
print('b:\t\t', b)
print('exp(b):\t\t', np.exp(b))





a:           array([1.0, 2.0, 3.0], dtype=float64)
exp(a):              array([2.718281828459045, 7.38905609893065, 20.08553692318767], dtype=float64)

b:           array([1.0+1.0j, 2.0+2.0j, 3.0+3.0j], dtype=complex)
exp(b):              array([1.468693939915885+2.287355287178842j, -3.074932320639359+6.71884969742825j, -19.88453084414699+2.834471132487004j], dtype=complex)







sqrt

If ULAB_SUPPORTS_COMPLEX is set to 1 in
ulab.h [https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h],
the exponential function can also take complex arrays as its argument,
in which case the return value is also complex. If the input is real,
but the results might be complex, the user is supposed to specify the
output dtype in the function call. Otherwise, the square roots of
negative numbers will result in NaN.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, -1])
print('a:\t\t', a)
print('sqrt(a):\t\t', np.sqrt(a))
print('sqrt(a):\t\t', np.sqrt(a, dtype=np.complex))





a:           array([1.0, -1.0], dtype=float64)
sqrt(a):             array([1.0, nan], dtype=float64)
sqrt(a):             array([1.0+0.0j, 0.0+1.0j], dtype=complex)







Vectorising generic python functions

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html

The examples above use factory functions. In fact, they are nothing but
the vectorised versions of the standard mathematical functions.
User-defined python functions can also be vectorised by help of
vectorize. This function takes a positional argument, namely, the
python function that you want to vectorise, and a non-mandatory
keyword argument, otypes, which determines the dtype of the
output array. The otypes must be None (default), or any of the
dtypes defined in ulab. With None, the output is
automatically turned into a float array.

The return value of vectorize is a micropython object that can
be called as a standard function, but which now accepts either a scalar,
an ndarray, or a generic micropython iterable as its sole
argument. Note that the function that is to be vectorised must have a
single argument.

# code to be run in micropython

from ulab import numpy as np

def f(x):
    return x*x

vf = np.vectorize(f)

# calling with a scalar
print('{:20}'.format('f on a scalar: '), vf(44.0))

# calling with an ndarray
a = np.array([1, 2, 3, 4])
print('{:20}'.format('f on an ndarray: '), vf(a))

# calling with a list
print('{:20}'.format('f on a list: '), vf([2, 3, 4]))





f on a scalar:       array([1936.0], dtype=float64)
f on an ndarray:     array([1.0, 4.0, 9.0, 16.0], dtype=float64)
f on a list:         array([4.0, 9.0, 16.0], dtype=float64)





As mentioned, the dtype of the resulting ndarray can be
specified via the otypes keyword. The value is bound to the function
object that vectorize returns, therefore, if the same function is to
be vectorised with different output types, then for each type a new
function object must be created.

# code to be run in micropython

from ulab import numpy as np

l = [1, 2, 3, 4]
def f(x):
    return x*x

vf1 = np.vectorize(f, otypes=np.uint8)
vf2 = np.vectorize(f, otypes=np.float)

print('{:20}'.format('output is uint8: '), vf1(l))
print('{:20}'.format('output is float: '), vf2(l))





output is uint8:     array([1, 4, 9, 16], dtype=uint8)
output is float:     array([1.0, 4.0, 9.0, 16.0], dtype=float64)





The otypes keyword argument cannot be used for type coercion: if the
function evaluates to a float, but otypes would dictate an integer
type, an exception will be raised:

# code to be run in micropython

from ulab import numpy as np

int_list = [1, 2, 3, 4]
float_list = [1.0, 2.0, 3.0, 4.0]
def f(x):
    return x*x

vf = np.vectorize(f, otypes=np.uint8)

print('{:20}'.format('integer list: '), vf(int_list))
# this will raise a TypeError exception
print(vf(float_list))





integer list:        array([1, 4, 9, 16], dtype=uint8)

Traceback (most recent call last):
  File "/dev/shm/micropython.py", line 14, in <module>
TypeError: can't convert float to int






Benchmarks

It should be pointed out that the vectorize function produces the
pseudo-vectorised version of the python function that is fed into
it, i.e., on the C level, the same python function is called, with
the all-encompassing mp_obj_t type arguments, and all that happens
is that the for loop in [f(i) for i in iterable] runs purely in
C. Since type checking and type conversion in f() is expensive, the
speed-up is not so spectacular as when iterating over an ndarray
with a factory function: a gain of approximately 30% can be expected,
when a native python type (e.g., list) is returned by the
function, and this becomes around 50% (a factor of 2), if conversion to
an ndarray is also counted.

The following code snippet calculates the square of a 1000 numbers with
the vectorised function (which returns an ndarray), with list
comprehension, and with list comprehension followed by conversion to
an ndarray. For comparison, the execution time is measured also for
the case, when the square is calculated entirely in ulab.

# code to be run in micropython

from ulab import numpy as np

def f(x):
    return x*x

vf = np.vectorize(f)

@timeit
def timed_vectorised_square(iterable):
    return vf(iterable)

@timeit
def timed_python_square(iterable):
    return [f(i) for i in iterable]

@timeit
def timed_ndarray_square(iterable):
    return np.array([f(i) for i in iterable])

@timeit
def timed_ulab_square(ndarray):
    return ndarray**2

print('vectorised function')
squares = timed_vectorised_square(range(1000))

print('\nlist comprehension')
squares = timed_python_square(range(1000))

print('\nlist comprehension + ndarray conversion')
squares = timed_ndarray_square(range(1000))

print('\nsquaring an ndarray entirely in ulab')
a = np.array(range(1000))
squares = timed_ulab_square(a)





vectorised function
execution time:  7237  us

list comprehension
execution time:  10248  us

list comprehension + ndarray conversion
execution time:  12562  us

squaring an ndarray entirely in ulab
execution time:  560  us





From the comparisons above, it is obvious that python functions
should only be vectorised, when the same effect cannot be gotten in
ulab only. However, although the time savings are not significant,
there is still a good reason for caring about vectorised functions.
Namely, user-defined python functions become universal, i.e., they
can accept generic iterables as well as ndarrays as their
arguments. A vectorised function is still a one-liner, resulting in
transparent and elegant code.

A final comment on this subject: the f(x) that we defined is a
generic python function. This means that it is not required that
it just crunches some numbers. It has to return a number object, but it
can still access the hardware in the meantime. So, e.g.,

led = pyb.LED(2)

def f(x):
    if x < 100:
        led.toggle()
    return x*x





is perfectly valid code.






            

          

      

      

    

  

    
      
          
            
  
numpy.fft

Functions related to Fourier transforms can be called by prepending them
with numpy.fft.. The module defines the following two functions:


	numpy.fft.fft


	numpy.fft.ifft




numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifft.html


fft

Since ulab’s ndarray does not support complex numbers, the
invocation of the Fourier transform differs from that in numpy. In
numpy, you can simply pass an array or iterable to the function, and
it will be treated as a complex array:

# code to be run in CPython

fft.fft([1, 2, 3, 4, 1, 2, 3, 4])





array([20.+0.j,  0.+0.j, -4.+4.j,  0.+0.j, -4.+0.j,  0.+0.j, -4.-4.j,
        0.+0.j])





WARNING: The array returned is also complex, i.e., the real and
imaginary components are cast together. In ulab, the real and
imaginary parts are treated separately: you have to pass two
ndarrays to the function, although, the second argument is
optional, in which case the imaginary part is assumed to be zero.

WARNING: The function, as opposed to numpy, returns a 2-tuple,
whose elements are two ndarrays, holding the real and imaginary
parts of the transform separately.

# code to be run in micropython

from ulab import numpy as np

x = np.linspace(0, 10, num=1024)
y = np.sin(x)
z = np.zeros(len(x))

a, b = np.fft.fft(x)
print('real part:\t', a)
print('\nimaginary part:\t', b)

c, d = np.fft.fft(x, z)
print('\nreal part:\t', c)
print('\nimaginary part:\t', d)





real part:   array([5119.996, -5.004663, -5.004798, ..., -5.005482, -5.005643, -5.006577], dtype=float)

imaginary part:      array([0.0, 1631.333, 815.659, ..., -543.764, -815.6588, -1631.333], dtype=float)

real part:   array([5119.996, -5.004663, -5.004798, ..., -5.005482, -5.005643, -5.006577], dtype=float)

imaginary part:      array([0.0, 1631.333, 815.659, ..., -543.764, -815.6588, -1631.333], dtype=float)






ulab with complex support

If the ULAB_SUPPORTS_COMPLEX, and ULAB_FFT_IS_NUMPY_COMPATIBLE
pre-processor constants are set to 1 in
ulab.h [https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h]
as

// Adds support for complex ndarrays
#ifndef ULAB_SUPPORTS_COMPLEX
#define ULAB_SUPPORTS_COMPLEX               (1)
#endif





#ifndef ULAB_FFT_IS_NUMPY_COMPATIBLE
#define ULAB_FFT_IS_NUMPY_COMPATIBLE    (1)
#endif





then the FFT routine will behave in a numpy-compatible way: the
single input array can either be real, in which case the imaginary part
is assumed to be zero, or complex. The output is also complex.

While numpy-compatibility might be a desired feature, it has one
side effect, namely, the FFT routine consumes approx. 50% more RAM. The
reason for this lies in the implementation details.




ifft

The above-mentioned rules apply to the inverse Fourier transform. The
inverse is also normalised by N, the number of elements, as is
customary in numpy. With the normalisation, we can ascertain that
the inverse of the transform is equal to the original array.

# code to be run in micropython

from ulab import numpy as np

x = np.linspace(0, 10, num=1024)
y = np.sin(x)

a, b = np.fft.fft(y)

print('original vector:\t', y)

y, z = np.fft.ifft(a, b)
# the real part should be equal to y
print('\nreal part of inverse:\t', y)
# the imaginary part should be equal to zero
print('\nimaginary part of inverse:\t', z)





original vector:     array([0.0, 0.009775016, 0.0195491, ..., -0.5275068, -0.5357859, -0.5440139], dtype=float)

real part of inverse:        array([-2.980232e-08, 0.0097754, 0.0195494, ..., -0.5275064, -0.5357857, -0.5440133], dtype=float)

imaginary part of inverse:   array([-2.980232e-08, -1.451171e-07, 3.693752e-08, ..., 6.44871e-08, 9.34986e-08, 2.18336e-07], dtype=float)





Note that unlike in numpy, the length of the array on which the
Fourier transform is carried out must be a power of 2. If this is not
the case, the function raises a ValueError exception.


ulab with complex support

The fft.ifft function can also be made numpy-compatible by
setting the ULAB_SUPPORTS_COMPLEX, and
ULAB_FFT_IS_NUMPY_COMPATIBLE pre-processor constants to 1.




Computation and storage costs


RAM

The FFT routine of ulab calculates the transform in place. This
means that beyond reserving space for the two ndarrays that will
be returned (the computation uses these two as intermediate storage
space), only a handful of temporary variables, all floats or 32-bit
integers, are required.



Speed of FFTs

A comment on the speed: a 1024-point transform implemented in python
would cost around 90 ms, and 13 ms in assembly, if the code runs on the
pyboard, v.1.1. You can gain a factor of four by moving to the D series
https://github.com/peterhinch/micropython-fourier/blob/master/README.md#8-performance.

# code to be run in micropython

from ulab import numpy as np

x = np.linspace(0, 10, num=1024)
y = np.sin(x)

@timeit
def np_fft(y):
    return np.fft.fft(y)

a, b = np_fft(y)





execution time:  1985  us





The C implementation runs in less than 2 ms on the pyboard (we have just
measured that), and has been reported to run in under 0.8 ms on the D
series board. That is an improvement of at least a factor of four.






            

          

      

      

    

  

    
      
          
            
  
numpy.linalg

Functions in the linalg module can be called by prepending them by
numpy.linalg.. The module defines the following seven functions:


	numpy.linalg.cholesky


	numpy.linalg.det


	numpy.linalg.eig


	numpy.linalg.inv


	numpy.linalg.norm


	numpy.linalg.qr





cholesky

numpy:
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.linalg.cholesky.html

The function of the Cholesky decomposition takes a positive definite,
symmetric square matrix as its single argument, and returns the square
root matrix in the lower triangular form. If the input argument does
not fulfill the positivity or symmetry condition, a ValueError is
raised.

# code to be run in micropython

from ulab import numpy as np

a = np.array([[25, 15, -5], [15, 18,  0], [-5,  0, 11]])
print('a: ', a)
print('\n' + '='*20 + '\nCholesky decomposition\n', np.linalg.cholesky(a))





a:  array([[25.0, 15.0, -5.0],
     [15.0, 18.0, 0.0],
     [-5.0, 0.0, 11.0]], dtype=float)

====================
Cholesky decomposition
 array([[5.0, 0.0, 0.0],
     [3.0, 3.0, 0.0],
     [-1.0, 1.0, 3.0]], dtype=float)







det

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.det.html

The det function takes a square matrix as its single argument, and
calculates the determinant. The calculation is based on successive
elimination of the matrix elements, and the return value is a float,
even if the input array was of integer type.

# code to be run in micropython

from ulab import numpy as np

a = np.array([[1, 2], [3, 4]], dtype=np.uint8)
print(np.linalg.det(a))





-2.0






Benchmark

Since the routine for calculating the determinant is pretty much the
same as for finding the inverse of a matrix, the execution
times are similar:

# code to be run in micropython

from ulab import numpy as np

@timeit
def matrix_det(m):
    return np.linalg.inv(m)

m = np.array([[1, 2, 3, 4, 5, 6, 7, 8], [0, 5, 6, 4, 5, 6, 4, 5],
              [0, 0, 9, 7, 8, 9, 7, 8], [0, 0, 0, 10, 11, 12, 11, 12],
             [0, 0, 0, 0, 4, 6, 7, 8], [0, 0, 0, 0, 0, 5, 6, 7],
             [0, 0, 0, 0, 0, 0, 7, 6], [0, 0, 0, 0, 0, 0, 0, 2]])

matrix_det(m)





execution time:  294  us








eig

numpy:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html

The eig function calculates the eigenvalues and the eigenvectors of
a real, symmetric square matrix. If the matrix is not symmetric, a
ValueError will be raised. The function takes a single argument, and
returns a tuple with the eigenvalues, and eigenvectors. With the help of
the eigenvectors, amongst other things, you can implement sophisticated
stabilisation routines for robots.

# code to be run in micropython

from ulab import numpy as np

a = np.array([[1, 2, 1, 4], [2, 5, 3, 5], [1, 3, 6, 1], [4, 5, 1, 7]], dtype=np.uint8)
x, y = np.linalg.eig(a)
print('eigenvectors of a:\n', y)
print('\neigenvalues of a:\n', x)





eigenvectors of a:
 array([[0.8151560042509081, -0.4499411232970823, -0.1644660242574522, 0.3256141906686505],
       [0.2211334179893007, 0.7846992598235538, 0.08372081379922657, 0.5730077734355189],
       [-0.1340114162071679, -0.3100776411558949, 0.8742786816656, 0.3486109343758527],
       [-0.5183258053659028, -0.292663481927148, -0.4489749870391468, 0.6664142156731531]], dtype=float)

eigenvalues of a:
 array([-1.165288365404889, 0.8029365530314914, 5.585625756072663, 13.77672605630074], dtype=float)





The same matrix diagonalised with numpy yields:

# code to be run in CPython

a = array([[1, 2, 1, 4], [2, 5, 3, 5], [1, 3, 6, 1], [4, 5, 1, 7]], dtype=np.uint8)
x, y = eig(a)
print('eigenvectors of a:\n', y)
print('\neigenvalues of a:\n', x)





eigenvectors of a:
 [[ 0.32561419  0.815156    0.44994112 -0.16446602]
 [ 0.57300777  0.22113342 -0.78469926  0.08372081]
 [ 0.34861093 -0.13401142  0.31007764  0.87427868]
 [ 0.66641421 -0.51832581  0.29266348 -0.44897499]]

eigenvalues of a:
 [13.77672606 -1.16528837  0.80293655  5.58562576]





When comparing results, we should keep two things in mind:


	the eigenvalues and eigenvectors are not necessarily sorted in the
same way


	an eigenvector can be multiplied by an arbitrary non-zero scalar, and
it is still an eigenvector with the same eigenvalue. This is why all
signs of the eigenvector belonging to 5.58, and 0.80 are flipped in
ulab with respect to numpy. This difference, however, is of
absolutely no consequence.





Computation expenses

Since the function is based on Givens
rotations [https://en.wikipedia.org/wiki/Givens_rotation] and runs
till convergence is achieved, or till the maximum number of allowed
rotations is exhausted, there is no universal estimate for the time
required to find the eigenvalues. However, an order of magnitude can, at
least, be guessed based on the measurement below:

# code to be run in micropython

from ulab import numpy as np

@timeit
def matrix_eig(a):
    return np.linalg.eig(a)

a = np.array([[1, 2, 1, 4], [2, 5, 3, 5], [1, 3, 6, 1], [4, 5, 1, 7]], dtype=np.uint8)

matrix_eig(a)





execution time:  111  us








inv

numpy:
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.linalg.inv.html

A square matrix, provided that it is not singular, can be inverted by
calling the inv function that takes a single argument. The inversion
is based on successive elimination of elements in the lower left
triangle, and raises a ValueError exception, if the matrix turns out
to be singular (i.e., one of the diagonal entries is zero).

# code to be run in micropython

from ulab import numpy as np

m = np.array([[1, 2, 3, 4], [4, 5, 6, 4], [7, 8.6, 9, 4], [3, 4, 5, 6]])

print(np.linalg.inv(m))





array([[-2.166666666666667, 1.500000000000001, -0.8333333333333337, 1.0],
       [1.666666666666667, -3.333333333333335, 1.666666666666668, -0.0],
       [0.1666666666666666, 2.166666666666668, -0.8333333333333337, -1.0],
       [-0.1666666666666667, -0.3333333333333333, 0.0, 0.5]], dtype=float64)






Computation expenses

Note that the cost of inverting a matrix is approximately twice as many
floats (RAM), as the number of entries in the original matrix, and
approximately as many operations, as the number of entries. Here are a
couple of numbers:

# code to be run in micropython

from ulab import numpy as np

@timeit
def invert_matrix(m):
    return np.linalg.inv(m)

m = np.array([[1, 2,], [4, 5]])
print('2 by 2 matrix:')
invert_matrix(m)

m = np.array([[1, 2, 3, 4], [4, 5, 6, 4], [7, 8.6, 9, 4], [3, 4, 5, 6]])
print('\n4 by 4 matrix:')
invert_matrix(m)

m = np.array([[1, 2, 3, 4, 5, 6, 7, 8], [0, 5, 6, 4, 5, 6, 4, 5],
              [0, 0, 9, 7, 8, 9, 7, 8], [0, 0, 0, 10, 11, 12, 11, 12],
             [0, 0, 0, 0, 4, 6, 7, 8], [0, 0, 0, 0, 0, 5, 6, 7],
             [0, 0, 0, 0, 0, 0, 7, 6], [0, 0, 0, 0, 0, 0, 0, 2]])
print('\n8 by 8 matrix:')
invert_matrix(m)





2 by 2 matrix:
execution time:  65  us

4 by 4 matrix:
execution time:  105  us

8 by 8 matrix:
execution time:  299  us





The above-mentioned scaling is not obeyed strictly. The reason for the
discrepancy is that the function call is still the same for all three
cases: the input must be inspected, the output array must be created,
and so on.




norm

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html

The function takes a vector or matrix without options, and returns its
2-norm, i.e., the square root of the sum of the square of the elements.

# code to be run in micropython

from ulab import numpy as np

a = np.array([1, 2, 3, 4, 5])
b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print('norm of a:', np.linalg.norm(a))
print('norm of b:', np.linalg.norm(b))





norm of a: 7.416198487095663
norm of b: 16.88194301613414







qr

numpy:
https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html

The function computes the QR decomposition of a matrix m of
dimensions (M, N), i.e., it returns two such matrices, q’, and
r, that m = qr, where q is orthonormal, and r is upper
triangular. In addition to the input matrix, which is the first
positional argument, the function accepts the mode keyword argument
with a default value of reduced. If mode is reduced, q,
and r are returned in the reduced representation. Otherwise, the
outputs will have dimensions (M, M), and (M, N), respectively.

# code to be run in micropython

from ulab import numpy as np

A = np.arange(6).reshape((3, 2))
print('A: \n', A)

print('complete decomposition')
q, r = np.linalg.qr(A, mode='complete')
print('q: \n', q)
print()
print('r: \n', r)

print('\n\nreduced decomposition')
q, r = np.linalg.qr(A, mode='reduced')
print('q: \n', q)
print()
print('r: \n', r)





A:
 array([[0, 1],
       [2, 3],
       [4, 5]], dtype=int16)
complete decomposition
q:
 array([[0.0, -0.9128709291752768, 0.408248290463863],
       [-0.447213595499958, -0.3651483716701107, -0.8164965809277261],
       [-0.8944271909999159, 0.1825741858350553, 0.408248290463863]], dtype=float64)

r:
 array([[-4.47213595499958, -5.813776741499454],
       [0.0, -1.095445115010332],
       [0.0, 0.0]], dtype=float64)


reduced decomposition
q:
 array([[0.0, -0.9128709291752768],
       [-0.447213595499958, -0.3651483716701107],
       [-0.8944271909999159, 0.1825741858350553]], dtype=float64)

r:
 array([[-4.47213595499958, -5.813776741499454],
       [0.0, -1.095445115010332]], dtype=float64)









            

          

      

      

    

  

    
      
          
            
  
scipy.linalg

scipy’s linalg module contains two functions,
solve_triangular, and cho_solve. The functions can be called by
prepending them by scipy.linalg..


	scipy.linalg.solve_cho


	scipy.linalg.solve_triangular





cho_solve

scipy:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve.html

Solve the linear equations

:raw-latex:`\begin{equation}
\mathbf{A}\cdot\mathbf{x} = \mathbf{b}
\end{equation}`

given the Cholesky factorization of \(\mathbf{A}\). As opposed to
scipy, the function simply takes the Cholesky-factorised matrix,
\(\mathbf{A}\), and \(\mathbf{b}\) as inputs.

# code to be run in micropython

from ulab import numpy as np
from ulab import scipy as spy

A = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 2, 1, 8]])
b = np.array([4, 2, 4, 2])

print(spy.linalg.cho_solve(A, b))





array([-0.01388888888888906, -0.6458333333333331, 2.677083333333333, -0.01041666666666667], dtype=float64)







solve_triangular

scipy:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_triangular.html

Solve the linear equation

:raw-latex:`\begin{equation}
\mathbf{a}\cdot\mathbf{x} = \mathbf{b}
\end{equation}`

with the assumption that \(\mathbf{a}\) is a triangular matrix. The
two position arguments are \(\mathbf{a}\), and \(\mathbf{b}\),
and the optional keyword argument is lower with a default value of
False. lower determines, whether data are taken from the lower,
or upper triangle of \(\mathbf{a}\).

Note that \(\mathbf{a}\) itself does not have to be a triangular
matrix: if it is not, then the values are simply taken to be 0 in the
upper or lower triangle, as dictated by lower. However,
\(\mathbf{a}\cdot\mathbf{x}\) will yield \(\mathbf{b}\) only,
when \(\mathbf{a}\) is triangular. You should keep this in mind,
when trying to establish the validity of the solution by back
substitution.

# code to be run in micropython

from ulab import numpy as np
from ulab import scipy as spy

a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 2, 1, 8]])
b = np.array([4, 2, 4, 2])

print('a:\n')
print(a)
print('\nb: ', b)

x = spy.linalg.solve_triangular(a, b, lower=True)

print('='*20)
print('x: ', x)
print('\ndot(a, x): ', np.dot(a, x))





a:

array([[3.0, 0.0, 0.0, 0.0],
       [2.0, 1.0, 0.0, 0.0],
       [1.0, 0.0, 1.0, 0.0],
       [1.0, 2.0, 1.0, 8.0]], dtype=float64)

b:  array([4.0, 2.0, 4.0, 2.0], dtype=float64)
====================
x:  array([1.333333333333333, -0.6666666666666665, 2.666666666666667, -0.08333333333333337], dtype=float64)

dot(a, x):  array([4.0, 2.0, 4.0, 2.0], dtype=float64)





With get the same solution, \(\mathbf{x}\), with the following
matrix, but the dot product of \(\mathbf{a}\), and
\(\mathbf{x}\) is no longer \(\mathbf{b}\):

# code to be run in micropython

from ulab import numpy as np
from ulab import scipy as spy

a = np.array([[3, 2, 1, 0], [2, 1, 0, 1], [1, 0, 1, 4], [1, 2, 1, 8]])
b = np.array([4, 2, 4, 2])

print('a:\n')
print(a)
print('\nb: ', b)

x = spy.linalg.solve_triangular(a, b, lower=True)

print('='*20)
print('x: ', x)
print('\ndot(a, x): ', np.dot(a, x))





a:

array([[3.0, 2.0, 1.0, 0.0],
       [2.0, 1.0, 0.0, 1.0],
       [1.0, 0.0, 1.0, 4.0],
       [1.0, 2.0, 1.0, 8.0]], dtype=float64)

b:  array([4.0, 2.0, 4.0, 2.0], dtype=float64)
====================
x:  array([1.333333333333333, -0.6666666666666665, 2.666666666666667, -0.08333333333333337], dtype=float64)

dot(a, x):  array([5.333333333333334, 1.916666666666666, 3.666666666666667, 2.0], dtype=float64)









            

          

      

      

    

  

    
      
          
            
  
scipy.optimize

Functions in the optimize module can be called by prepending them by
scipy.optimize.. The module defines the following three functions:


	scipy.optimize.bisect


	scipy.optimize.fmin


	scipy.optimize.newton




Note that routines that work with user-defined functions still have to
call the underlying python code, and therefore, gains in speed are
not as significant as with other vectorised operations. As a rule of
thumb, a factor of two can be expected, when compared to an optimised
python implementation.


bisect

scipy:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.bisect.html

bisect finds the root of a function of one variable using a simple
bisection routine. It takes three positional arguments, the function
itself, and two starting points. The function must have opposite signs
at the starting points. Returned is the position of the root.

Two keyword arguments, xtol, and maxiter can be supplied to
control the accuracy, and the number of bisections, respectively.

# code to be run in micropython

from ulab import scipy as spy

def f(x):
    return x*x - 1

print(spy.optimize.bisect(f, 0, 4))

print('only 8 bisections: ',  spy.optimize.bisect(f, 0, 4, maxiter=8))

print('with 0.1 accuracy: ',  spy.optimize.bisect(f, 0, 4, xtol=0.1))





0.9999997615814209
only 8 bisections:  0.984375
with 0.1 accuracy:  0.9375






Performance

Since the bisect routine calls user-defined python functions,
the speed gain is only about a factor of two, if compared to a purely
python implementation.

# code to be run in micropython

from ulab import scipy as spy

def f(x):
    return (x-1)*(x-1) - 2.0

def bisect(f, a, b, xtol=2.4e-7, maxiter=100):
    if f(a) * f(b) > 0:
        raise ValueError

    rtb = a if f(a) < 0.0 else b
    dx = b - a if f(a) < 0.0 else a - b
    for i in range(maxiter):
        dx *= 0.5
        x_mid = rtb + dx
        mid_value = f(x_mid)
        if mid_value < 0:
            rtb = x_mid
        if abs(dx) < xtol:
            break

    return rtb

@timeit
def bisect_scipy(f, a, b):
    return spy.optimize.bisect(f, a, b)

@timeit
def bisect_timed(f, a, b):
    return bisect(f, a, b)

print('bisect running in python')
bisect_timed(f, 3, 2)

print('bisect running in C')
bisect_scipy(f, 3, 2)





bisect running in python
execution time:  1270  us
bisect running in C
execution time:  642  us








fmin

scipy:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html

The fmin function finds the position of the minimum of a
user-defined function by using the downhill simplex method. Requires two
positional arguments, the function, and the initial value. Three keyword
arguments, xatol, fatol, and maxiter stipulate conditions
for stopping.

# code to be run in micropython

from ulab import scipy as spy

def f(x):
    return (x-1)**2 - 1

print(spy.optimize.fmin(f, 3.0))
print(spy.optimize.fmin(f, 3.0, xatol=0.1))





0.9996093749999952
1.199999999999996







newton

scipy:https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html

newton finds a zero of a real, user-defined function using the
Newton-Raphson (or secant or Halley’s) method. The routine requires two
positional arguments, the function, and the initial value. Three keyword
arguments can be supplied to control the iteration. These are the
absolute and relative tolerances tol, and rtol, respectively,
and the number of iterations before stopping, maxiter. The function
retuns a single scalar, the position of the root.

# code to be run in micropython

from ulab import scipy as spy

def f(x):
    return x*x*x - 2.0

print(spy.optimize.newton(f, 3., tol=0.001, rtol=0.01))





1.260135727246117









            

          

      

      

    

  

    
      
          
            
  
scipy.signal

This module defines the single function:


	scipy.signal.sosfilt





sosfilt

scipy:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html

Filter data along one dimension using cascaded second-order sections.

The function takes two positional arguments, sos, the filter
segments of length 6, and the one-dimensional, uniformly sampled data
set to be filtered. Returns the filtered data, or the filtered data and
the final filter delays, if the zi keyword arguments is supplied.
The keyword argument must be a float ndarray of shape
(n_sections, 2). If zi is not passed to the function, the
initial values are assumed to be 0.

# code to be run in micropython

from ulab import numpy as np
from ulab import scipy as spy

x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
sos = [[1, 2, 3, 1, 5, 6], [1, 2, 3, 1, 5, 6]]
y = spy.signal.sosfilt(sos, x)
print('y: ', y)





y:  array([0.0, 1.0, -4.0, 24.0, -104.0, 440.0, -1728.0, 6532.000000000001, -23848.0, 84864.0], dtype=float)





# code to be run in micropython

from ulab import numpy as np
from ulab import scipy as spy

x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
sos = [[1, 2, 3, 1, 5, 6], [1, 2, 3, 1, 5, 6]]
# initial conditions of the filter
zi = np.array([[1, 2], [3, 4]])

y, zf = spy.signal.sosfilt(sos, x, zi=zi)
print('y: ', y)
print('\n' + '='*40 + '\nzf: ', zf)





y:  array([4.0, -16.0, 63.00000000000001, -227.0, 802.9999999999999, -2751.0, 9271.000000000001, -30775.0, 101067.0, -328991.0000000001], dtype=float)

========================================
zf:  array([[37242.0, 74835.0],
     [1026187.0, 1936542.0]], dtype=float)









            

          

      

      

    

  

    
      
          
            
  
scipy.special

scipy’s special module defines several functions that behave
as do the standard mathematical functions of the numpy, i.e., they
can be called on any scalar, scalar-valued iterable (ranges, lists,
tuples containing numbers), and on ndarrays without having to
change the call signature. In all cases the functions return a new
ndarray of typecode float (since these functions usually
generate float values, anyway).

At present, ulab’s special module contains the following
functions:

erf, erfc, gamma, and gammaln, and they can be called by
prepending them by scipy.special..

# code to be run in micropython

from ulab import numpy as np
from ulab import scipy as spy

a = range(9)
b = np.array(a)

print('a: ', a)
print(spy.special.erf(a))

print('\nb: ', b)
print(spy.special.erfc(b))





a:  range(0, 9)
array([0.0, 0.8427007929497149, 0.9953222650189527, 0.9999779095030014, 0.9999999845827421, 1.0, 1.0, 1.0, 1.0], dtype=float64)

b:  array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64)
array([1.0, 0.1572992070502851, 0.004677734981047265, 2.209049699858544e-05, 1.541725790028002e-08, 1.537459794428035e-12, 2.151973671249892e-17, 4.183825607779414e-23, 1.122429717298293e-29], dtype=float64)








            

          

      

      

    

  

    
      
          
            
  
ulab utilities

There might be cases, when the format of your data does not conform to
ulab, i.e., there is no obvious way to map the data to any of the
five supported dtypes. A trivial example is an ADC or microphone
signal with 32-bit resolution. For such cases, ulab defines the
utils module, which, at the moment, has four functions that are not
numpy compatible, but which should ease interfacing ndarrays
to peripheral devices.

The utils module can be enabled by setting the
ULAB_HAS_UTILS_MODULE constant to 1 in
ulab.h [https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h]:

#ifndef ULAB_HAS_UTILS_MODULE
#define ULAB_HAS_UTILS_MODULE               (1)
#endif





This still does not compile any functions into the firmware. You can add
a function by setting the corresponding pre-processor constant to 1.
E.g.,

#ifndef ULAB_UTILS_HAS_FROM_INT16_BUFFER
#define ULAB_UTILS_HAS_FROM_INT16_BUFFER    (1)
#endif






from_int32_buffer, from_uint32_buffer

With the help of utils.from_int32_buffer, and
utils.from_uint32_buffer, it is possible to convert 32-bit integer
buffers to ndarrays of float type. These functions have a syntax
similar to numpy.frombuffer; they support the count=-1, and
offset=0 keyword arguments. However, in addition, they also accept
out=None, and byteswap=False.

Here is an example without keyword arguments

# code to be run in micropython

from ulab import numpy as np
from ulab import utils

a = bytearray([1, 1, 0, 0, 0, 0, 0, 255])
print('a: ', a)
print()
print('unsigned integers: ', utils.from_uint32_buffer(a))

b = bytearray([1, 1, 0, 0, 0, 0, 0, 255])
print('\nb:  ', b)
print()
print('signed integers: ', utils.from_int32_buffer(b))





a:  bytearray(b'x01x01x00x00x00x00x00xff')

unsigned integers:  array([257.0, 4278190080.000001], dtype=float64)

b:   bytearray(b'x01x01x00x00x00x00x00xff')

signed integers:  array([257.0, -16777216.0], dtype=float64)

The meaning of count, and offset is similar to that in
numpy.frombuffer. count is the number of floats that will be
converted, while offset would discard the first offset number of
bytes from the buffer before the conversion.

In the example above, repeated calls to either of the functions returns
a new ndarray. You can save RAM by supplying the out keyword
argument with a pre-defined ndarray of sufficient size, in which
case the results will be inserted into the ndarray. If the dtype
of out is not float, a TypeError exception will be raised.

# code to be run in micropython

from ulab import numpy as np
from ulab import utils

a = np.array([1, 2], dtype=np.float)
b = bytearray([1, 0, 1, 0, 0, 1, 0, 1])
print('b: ', b)
utils.from_uint32_buffer(b, out=a)
print('a: ', a)





b:  bytearray(b'x01x00x01x00x00x01x00x01')
a:  array([65537.0, 16777472.0], dtype=float64)

Finally, since there is no guarantee that the endianness of a particular
peripheral device supplying the buffer is the same as that of the
microcontroller, from_(u)intbuffer allows a conversion via the
byteswap keyword argument.

# code to be run in micropython

from ulab import numpy as np
from ulab import utils

a = bytearray([1, 0, 0, 0, 0, 0, 0, 1])
print('a: ', a)
print('buffer without byteswapping: ', utils.from_uint32_buffer(a))
print('buffer with byteswapping: ', utils.from_uint32_buffer(a, byteswap=True))





a:  bytearray(b'x01x00x00x00x00x00x00x01')
buffer without byteswapping:  array([1.0, 16777216.0], dtype=float64)
buffer with byteswapping:  array([16777216.0, 1.0], dtype=float64)



from_int16_buffer, from_uint16_buffer

These two functions are identical to utils.from_int32_buffer, and
utils.from_uint32_buffer, with the exception that they convert
16-bit integers to floating point ndarrays.



spectrogram

In addition to the Fourier transform and its inverse, ulab also
sports a function called spectrogram, which returns the absolute
value of the Fourier transform, also known as the power spectrum. This
could be used to find the dominant spectral component in a time series.
The arguments are treated in the same way as in fft, and ifft.
This means that, if the firmware was compiled with complex support, the
input can also be a complex array.

# code to be run in micropython

from ulab import numpy as np
from ulab import utils as utils

x = np.linspace(0, 10, num=1024)
y = np.sin(x)

a = utils.spectrogram(y)

print('original vector:\n', y)
print('\nspectrum:\n', a)





original vector:
 array([0.0, 0.009775015390171337, 0.01954909674625918, ..., -0.5275140569487312, -0.5357931822978732, -0.5440211108893697], dtype=float64)

spectrum:
 array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)





As such, spectrogram is really just a shorthand for
np.sqrt(a*a + b*b), however, it saves significant amounts of RAM:
the expression a*a + b*b has to allocate memory for a*a,
b*b, and finally, their sum. In contrast, spectrogram calculates
the spectrum internally, and stores it in the memory segment that was
reserved for the real part of the Fourier transform.

# code to be run in micropython

from ulab import numpy as np
from ulab import utils as utils

x = np.linspace(0, 10, num=1024)
y = np.sin(x)

a, b = np.fft.fft(y)

print('\nspectrum calculated the hard way:\n', np.sqrt(a*a + b*b))

a = utils.spectrogram(y)

print('\nspectrum calculated the lazy way:\n', a)





spectrum calculated the hard way:
 array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)

spectrum calculated the lazy way:
 array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)









            

          

      

      

    

  

    
      
          
            
  
Tricks

This section of the book discusses a couple of tricks that can be
exploited to either speed up computations, or save on RAM. However,
there is probably no silver bullet, and you have to evaluate your code
in terms of execution speed (if the execution is time critical), or RAM
used. You should also keep in mind that, if a particular code snippet is
optimised on some hardware, there is no guarantee that on another piece
of hardware, you will get similar improvements. Hardware implementations
are vastly different. Some microcontrollers do not even have an FPU, so
you should not be surprised that you get significantly different
benchmarks. Just to underline this statement, you can study the
collection of benchmarks [https://github.com/thiagofe/ulab_samples].


Use an ndarray, if you can

Many functions in ulab are implemented in a universal fashion,
meaning that both generic micropython iterables, and ndarrays
can be passed as an argument. E.g., both

from ulab import numpy as np

np.sum([1, 2, 3, 4, 5])





and

from ulab import numpy as np

a = np.array([1, 2, 3, 4, 5])
np.sum(a)





will return the micropython variable 15 as the result. Still,
np.sum(a) is evaluated significantly faster, because in
np.sum([1, 2, 3, 4, 5]), the interpreter has to fetch 5
micropython variables, convert them to float, and sum the
values, while the C type of a is known, thus the interpreter can
invoke a single for loop for the evaluation of the sum. In the
for loop, there are no function calls, the iteration simply walks
through the pointer holding the values of a, and adds the values to
an accumulator. If the array a is already available, then you can
gain a factor of 3 in speed by calling sum on the array, instead of
using the list. Compared to the python implementation of the same
functionality, the speed-up is around 40 (again, this might depend on
the hardware).

On the other hand, if the array is not available, then there is not much
point in converting the list to an ndarray and passing that to the
function. In fact, you should expect a slow-down: the constructor has to
iterate over the list elements, and has to convert them to a numerical
type. On top of that, it also has to reserve RAM for the ndarray.



Use a reasonable dtype

Just as in numpy, the default dtype is float. But this does
not mean that that is the most suitable one in all scenarios. If data
are streamed from an 8-bit ADC, and you only want to know the maximum,
or the sum, then it is quite reasonable to use uint8 for the
dtype. Storing the same data in float array would cost 4 or 8
times as much RAM, with absolutely no gain. Do not rely on the default
value of the constructor’s keyword argument, and choose one that fits!



Beware the axis!

Whenever ulab iterates over multi-dimensional arrays, the outermost
loop is the first axis, then the second axis, and so on. E.g., when the
sum of

a = array([[1, 2, 3, 4],
           [5, 6, 7, 8],
           [9, 10, 11, 12]], dtype=uint8)





is being calculated, first the data pointer walks along [1, 2, 3, 4]
(innermost loop, last axis), then is moved back to the position, where 5
is stored (this is the nesting loop), and traverses [5, 6, 7, 8],
and so on. Moving the pointer back to 5 is more expensive, than moving
it along an axis, because the position of 5 has to be calculated,
whereas moving from 5 to 6 is simply an addition to the address. Thus,
while the matrix

b = array([[1, 5, 9],
           [2, 6, 10],
           [3, 7, 11],
           [4, 8, 12]], dtype=uint8)





holds the same data as a, the summation over the entries in b is
slower, because the pointer has to be re-wound three times, as opposed
to twice in a. For small matrices the savings are not significant,
but you would definitely notice the difference, if you had

a = array(range(2000)).reshape((2, 1000))
b = array(range(2000)).reshape((1000, 2))





The moral is that, in order to improve on the execution speed, whenever
possible, you should try to make the last axis the longest. As a side
note, numpy can re-arrange its loops, and puts the longest axis in
the innermost loop. This is why the longest axis is sometimes referred
to as the fast axis. In ulab, the order of the axes is fixed.



Reduce the number of artifacts

Before showing a real-life example, let us suppose that we want to
interpolate uniformly sampled data, and the absolute magnitude is not
really important, we only care about the ratios between neighbouring
value. One way of achieving this is calling the interp functions.
However, we could just as well work with slices.

# code to be run in CPython

a = array([0, 10, 2, 20, 4], dtype=np.uint8)
b = np.zeros(9, dtype=np.uint8)

b[::2] = 2 * a
b[1::2] = a[:-1] + a[1:]

b //= 2
b





array([ 0,  5, 10,  6,  2, 11, 20, 12,  4], dtype=uint8)





b now has values from a at every even position, and interpolates
the values on every odd position. If only the relative magnitudes are
important, then we can even save the division by 2, and we end up with

# code to be run in CPython

a = array([0, 10, 2, 20, 4], dtype=np.uint8)
b = np.zeros(9, dtype=np.uint8)

b[::2] = 2 * a
b[1::2] = a[:-1] + a[1:]

b





array([ 0, 10, 20, 12,  4, 22, 40, 24,  8], dtype=uint8)





Importantly, we managed to keep the results in the smaller dtype,
uint8. Now, while the two assignments above are terse and pythonic,
the code is not the most efficient: the right hand sides are compound
statements, generating intermediate results. To store them, RAM has to
be allocated. This takes time, and leads to memory fragmentation. Better
is to write out the assignments in 4 instructions:

# code to be run in CPython

b = np.zeros(9, dtype=np.uint8)

b[::2] = a
b[::2] += a
b[1::2] = a[:-1]
b[1::2] += a[1:]

b





array([ 0, 10, 20, 12,  4, 22, 40, 24,  8], dtype=uint8)





The results are the same, but no extra RAM is allocated, except for the
views a[:-1], and a[1:], but those had to be created even in the
origin implementation.


Upscaling images

And now the example: there are low-resolution thermal cameras out there.
Low resolution might mean 8 by 8 pixels. Such a small number of pixels
is just not reasonable to plot, no matter how small the display is. If
you want to make the camera image a bit more pleasing, you can upscale
(stretch) it in both dimensions. This can be done exactly as we
up-scaled the linear array:

# code to be run in CPython

b = np.zeros((15, 15), dtype=np.uint8)

b[1::2,::2] = a[:-1,:]
b[1::2,::2] += a[1:, :]
b[1::2,::2] //= 2
b[::,1::2] = a[::,:-1:2]
b[::,1::2] += a[::,2::2]
b[::,1::2] //= 2





Up-scaling by larger numbers can be done in a similar fashion, you
simply have more assignments.

There are cases, when one cannot do away with the intermediate results.
Two prominent cases are the where function, and indexing by means of
a Boolean array. E.g., in

# code to be run in CPython

a = array([1, 2, 3, 4, 5])
b = a[a < 4]
b





array([1, 2, 3])





the expression a < 4 produces the Boolean array,

# code to be run in CPython

a < 4





array([ True,  True,  True, False, False])





If you repeatedly have such conditions in a loop, you might have to
peridically call the garbage collector to remove the Boolean arrays that
are used only once.

# code to be run in CPython










            

          

      

      

    

  

    
      
          
            
  
Programming ulab

Earlier we have seen, how ulab’s functions and methods can be
accessed in micropython. This last section of the book explains, how
these functions are implemented. By the end of this chapter, not only
would you be able to extend ulab, and write your own
numpy-compatible functions, but through a deeper understanding of
the inner workings of the functions, you would also be able to see what
the trade-offs are at the python level.


Code organisation

As mentioned earlier, the python functions are organised into
sub-modules at the C level. The C sub-modules can be found in
./ulab/code/.



The ndarray object


General comments

ndarrays are efficient containers of numerical data of the same type
(i.e., signed/unsigned chars, signed/unsigned integers or
mp_float_ts, which, depending on the platform, are either C
floats, or C doubles). Beyond storing the actual data in the
void pointer *array, the type definition has eight additional
members (on top of the base type). Namely, the dtype, which
tells us, how the bytes are to be interpreted. Moreover, the
itemsize, which stores the size of a single entry in the array,
boolean, an unsigned integer, which determines, whether the arrays
is to be treated as a set of Booleans, or as numerical data, ndim,
the number of dimensions (uint8_t), len, the length of the array
(the number of entries), the shape (*size_t), the strides
(*int32_t). The length is simply the product of the numbers in
shape.

The type definition is as follows:

typedef struct _ndarray_obj_t {
    mp_obj_base_t base;
    uint8_t dtype;
    uint8_t itemsize;
    uint8_t boolean;
    uint8_t ndim;
    size_t len;
    size_t shape[ULAB_MAX_DIMS];
    int32_t strides[ULAB_MAX_DIMS];
    void *array;
} ndarray_obj_t;







Memory layout

The values of an ndarray are stored in a contiguous segment in the
RAM. The ndarray can be dense, meaning that all numbers in the
linear memory segment belong to a linar combination of coordinates, and
it can also be sparse, i.e., some elements of the linear storage space
will be skipped, when the elements of the tensor are traversed.

In the RAM, the position of the item
\(M(n_1, n_2, ..., n_{k-1}, n_k)\) in a dense tensor of rank
\(k\) is given by the linear combination

:raw-latex:`\begin{equation}
P(n_1, n_2, ..., n_{k-1}, n_k) = n_1 s_1 + n_2 s_2 + ... + n_{k-1}s_{k-1} + n_ks_k = \sum_{i=1}^{k}n_is_i
\end{equation}` where \(s_i\) are the strides of the tensor, defined
as

:raw-latex:`\begin{equation}
s_i = \prod_{j=i+1}^k l_j
\end{equation}`

where \(l_j\) is length of the tensor along the \(j\)th axis.
When the tensor is sparse (e.g., when the tensor is sliced), the strides
along a particular axis will be multiplied by a non-zero integer. If
this integer is different to \(\pm 1\), the linear combination above
cannot access all elements in the RAM, i.e., some numbers will be
skipped. Note that \(|s_1| > |s_2| > ... > |s_{k-1}| > |s_k|\), even
if the tensor is sparse. The statement is trivial for dense tensors, and
it follows from the definition of \(s_i\). For sparse tensors, a
slice cannot have a step larger than the shape along that axis. But for
dense tensors, \(s_i/s_{i+1} = l_i\).

When creating a view, we simply re-calculate the strides, and
re-set the *array pointer.




Iterating over elements of a tensor

The shape and strides members of the array tell us how we have
to move our pointer, when we want to read out the numbers. For technical
reasons that will become clear later, the numbers in shape and in
strides are aligned to the right, and begin on the right hand side,
i.e., if the number of possible dimensions is ULAB_MAX_DIMS, then
shape[ULAB_MAX_DIMS-1] is the length of the last axis,
shape[ULAB_MAX_DIMS-2] is the length of the last but one axis, and
so on. If the number of actual dimensions, ndim < ULAB_MAX_DIMS, the
first ULAB_MAX_DIMS - ndim entries in shape and strides will
be equal to zero, but they could, in fact, be assigned any value,
because these will never be accessed in an operation.

With this definition of the strides, the linear combination in
\(P(n_1, n_2, ..., n_{k-1}, n_k)\) is a one-to-one mapping from the
space of tensor coordinates, \((n_1, n_2, ..., n_{k-1}, n_k)\), and
the coordinate in the linear array,
\(n_1s_1 + n_2s_2 + ... + n_{k-1}s_{k-1} + n_ks_k\), i.e., no two
distinct sets of coordinates will result in the same position in the
linear array.

Since the strides are given in terms of bytes, when we iterate over
an array, the void data pointer is usually cast to uint8_t, and the
values are converted using the proper data type stored in
ndarray->dtype. However, there might be cases, when it makes perfect
sense to cast *array to a different type, in which case the
strides have to be re-scaled by the value of ndarray->itemsize.


Iterating using the unwrapped loops

The following macro definition is taken from
vector.h [https://github.com/v923z/micropython-ulab/blob/master/code/numpy/vector/vector.h],
and demonstrates, how we can iterate over a single array in four
dimensions.

#define ITERATE_VECTOR(type, array, source, sarray) do {
    size_t i=0;
    do {
        size_t j = 0;
        do {
            size_t k = 0;
            do {
                size_t l = 0;
                do {
                    *(array)++ = f(*((type *)(sarray)));
                    (sarray) += (source)->strides[ULAB_MAX_DIMS - 1];
                    l++;
                } while(l < (source)->shape[ULAB_MAX_DIMS-1]);
                (sarray) -= (source)->strides[ULAB_MAX_DIMS - 1] * (source)->shape[ULAB_MAX_DIMS-1];
                (sarray) += (source)->strides[ULAB_MAX_DIMS - 2];
                k++;
            } while(k < (source)->shape[ULAB_MAX_DIMS-2]);
            (sarray) -= (source)->strides[ULAB_MAX_DIMS - 2] * (source)->shape[ULAB_MAX_DIMS-2];
            (sarray) += (source)->strides[ULAB_MAX_DIMS - 3];
            j++;
        } while(j < (source)->shape[ULAB_MAX_DIMS-3]);
        (sarray) -= (source)->strides[ULAB_MAX_DIMS - 3] * (source)->shape[ULAB_MAX_DIMS-3];
        (sarray) += (source)->strides[ULAB_MAX_DIMS - 4];
        i++;
    } while(i < (source)->shape[ULAB_MAX_DIMS-4]);
} while(0)





We start with the innermost loop, the one recursing l. array is
already of type mp_float_t, while the source array, sarray, has
been cast to uint8_t in the calling function. The numbers contained
in sarray have to be read out in the proper type dictated by
ndarray->dtype. This is what happens in the statement
*((type *)(sarray)), and this number is then fed into the function
f. Vectorised mathematical functions produce dense arrays, and for
this reason, we can simply advance the array pointer.

The advancing of the sarray pointer is a bit more involving: first,
in the innermost loop, we simply move forward by the amount given by the
last stride, which is (source)->strides[ULAB_MAX_DIMS - 1], because
the shape and the strides are aligned to the right. We move the
pointer as many times as given by (source)->shape[ULAB_MAX_DIMS-1],
which is the length of the very last axis. Hence the the structure of
the loop

size_t l = 0;
do {
    ...
    l++;
} while(l < (source)->shape[ULAB_MAX_DIMS-1]);





Once we have exhausted the last axis, we have to re-wind the pointer,
and advance it by an amount given by the last but one stride. Keep in
mind that in the the innermost loop we moved our pointer
(source)->shape[ULAB_MAX_DIMS-1] times by
(source)->strides[ULAB_MAX_DIMS - 1], i.e., we re-wind it by moving
it backwards by
(source)->strides[ULAB_MAX_DIMS - 1] * (source)->shape[ULAB_MAX_DIMS-1].
In the next step, we move forward by
(source)->strides[ULAB_MAX_DIMS - 2], which is the last but one
stride.

(sarray) -= (source)->strides[ULAB_MAX_DIMS - 1] * (source)->shape[ULAB_MAX_DIMS-1];
(sarray) += (source)->strides[ULAB_MAX_DIMS - 2];





This pattern must be repeated for each axis of the array, and this is
how we arrive at the four nested loops listed above.



Re-winding arrays by means of a function

In addition to un-wrapping the iteration loops by means of macros, there
is another way of traversing all elements of a tensor: we note that,
since \(|s_1| > |s_2| > ... > |s_{k-1}| > |s_k|\),
\(P(n1, n2, ..., n_{k-1}, n_k)\) changes most slowly in the last
coordinate. Hence, if we start from the very beginning, (\(n_i = 0\)
for all \(i\)), and walk along the linear RAM segment, we increment
the value of \(n_k\) as long as \(n_k < l_k\). Once
\(n_k = l_k\), we have to reset \(n_k\) to 0, and increment
\(n_{k-1}\) by one. After each such round, \(n_{k-1}\) will be
incremented by one, as long as \(n_{k-1} < l_{k-1}\). Once
\(n_{k-1} = l_{k-1}\), we reset both \(n_k\), and
\(n_{k-1}\) to 0, and increment \(n_{k-2}\) by one.

Rewinding the arrays in this way is implemented in the function
ndarray_rewind_array in
ndarray.c [https://github.com/v923z/micropython-ulab/blob/master/code/ndarray.c].

void ndarray_rewind_array(uint8_t ndim, uint8_t *array, size_t *shape, int32_t *strides, size_t *coords) {
    // resets the data pointer of a single array, whenever an axis is full
    // since we always iterate over the very last axis, we have to keep track of
    // the last ndim-2 axes only
    array -= shape[ULAB_MAX_DIMS - 1] * strides[ULAB_MAX_DIMS - 1];
    array += strides[ULAB_MAX_DIMS - 2];
    for(uint8_t i=1; i < ndim-1; i++) {
        coords[ULAB_MAX_DIMS - 1 - i] += 1;
        if(coords[ULAB_MAX_DIMS - 1 - i] == shape[ULAB_MAX_DIMS - 1 - i]) { // we are at a dimension boundary
            array -= shape[ULAB_MAX_DIMS - 1 - i] * strides[ULAB_MAX_DIMS - 1 - i];
            array += strides[ULAB_MAX_DIMS - 2 - i];
            coords[ULAB_MAX_DIMS - 1 - i] = 0;
            coords[ULAB_MAX_DIMS - 2 - i] += 1;
        } else { // coordinates can change only, if the last coordinate changes
            return;
        }
    }
}





and the function would be called as in the snippet below. Note that the
innermost loop is factored out, so that we can save the if(...)
statement for the last axis.

size_t *coords = ndarray_new_coords(results->ndim);
for(size_t i=0; i < results->len/results->shape[ULAB_MAX_DIMS -1]; i++) {
    size_t l = 0;
    do {
        ...
        l++;
    } while(l < results->shape[ULAB_MAX_DIMS - 1]);
    ndarray_rewind_array(results->ndim, array, results->shape, strides, coords);
} while(0)





The advantage of this method is that the implementation is independent
of the number of dimensions: the iteration requires more or less the
same flash space for 2 dimensions as for 22. However, the price we have
to pay for this convenience is the extra function call.




Iterating over two ndarrays simultaneously: broadcasting

Whenever we invoke a binary operator, call a function with two arguments
of ndarray type, or assign something to an ndarray, we have to
iterate over two views at the same time. The task is trivial, if the two
ndarrays in question have the same shape (but not necessarily the
same set of strides), because in this case, we can still iterate in the
same loop. All that happens is that we move two data pointers in sync.

The problem becomes a bit more involving, when the shapes of the two
ndarrays are not identical. For such cases, numpy defines
so-called broadcasting, which boils down to two rules.


	The shapes in the tensor with lower rank has to be prepended with
axes of size 1 till the two ranks become equal.


	Along all axes the two tensors should have the same size, or one of
the sizes must be 1.




If, after applying the first rule the second is not satisfied, the two
ndarrays cannot be broadcast together.

Now, let us suppose that we have two compatible ndarrays, i.e.,
after applying the first rule, the second is satisfied. How do we
iterate over the elements in the tensors?

We should recall, what exactly we do, when iterating over a single
array: normally, we move the data pointer by the last stride, except,
when we arrive at a dimension boundary (when the last axis is
exhausted). At that point, we move the pointer by an amount dictated by
the strides. And this is the key: dictated by the strides. Now, if we
have two arrays that are originally not compatible, we define new
strides for them, and use these in the iteration. With that, we are back
to the case, where we had two compatible arrays.

Now, let us look at the second broadcasting rule: if the two arrays have
the same size, we take both ndarrays’ strides along that axis. If,
on the other hand, one of the ndarrays is of length 1 along one of
its axes, we set the corresponding strides to 0. This will ensure that
that data pointer is not moved, when we iterate over both ndarrays
at the same time.

Thus, in order to implement broadcasting, we first have to check,
whether the two above-mentioned rules can be satisfied, and if so, we
have to find the two new sets strides.

The ndarray_can_broadcast function from
ndarray.c [https://github.com/v923z/micropython-ulab/blob/master/code/ndarray.c]
takes two ndarrays, and returns true, if the two arrays can be
broadcast together. At the same time, it also calculates new strides for
the two arrays, so that they can be iterated over at the same time.

bool ndarray_can_broadcast(ndarray_obj_t *lhs, ndarray_obj_t *rhs, uint8_t *ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
    // returns True or False, depending on, whether the two arrays can be broadcast together
    // numpy's broadcasting rules are as follows:
    //
    // 1. the two shapes are either equal
    // 2. one of the shapes is 1
    memset(lstrides, 0, sizeof(size_t)*ULAB_MAX_DIMS);
    memset(rstrides, 0, sizeof(size_t)*ULAB_MAX_DIMS);
    lstrides[ULAB_MAX_DIMS - 1] = lhs->strides[ULAB_MAX_DIMS - 1];
    rstrides[ULAB_MAX_DIMS - 1] = rhs->strides[ULAB_MAX_DIMS - 1];
    for(uint8_t i=ULAB_MAX_DIMS; i > 0; i--) {
        if((lhs->shape[i-1] == rhs->shape[i-1]) || (lhs->shape[i-1] == 0) || (lhs->shape[i-1] == 1) ||
        (rhs->shape[i-1] == 0) || (rhs->shape[i-1] == 1)) {
            shape[i-1] = MAX(lhs->shape[i-1], rhs->shape[i-1]);
            if(shape[i-1] > 0) (*ndim)++;
            if(lhs->shape[i-1] < 2) {
                lstrides[i-1] = 0;
            } else {
                lstrides[i-1] = lhs->strides[i-1];
            }
            if(rhs->shape[i-1] < 2) {
                rstrides[i-1] = 0;
            } else {
                rstrides[i-1] = rhs->strides[i-1];
            }
        } else {
            return false;
        }
    }
    return true;
}





A good example of how the function would be called can be found in
vector.c [https://github.com/v923z/micropython-ulab/blob/master/code/numpy/vector/vector.c],
in the vector_arctan2 function:

mp_obj_t vector_arctan2(mp_obj_t y, mp_obj_t x) {
    ...
    uint8_t ndim = 0;
    size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
    int32_t *xstrides = m_new(int32_t, ULAB_MAX_DIMS);
    int32_t *ystrides = m_new(int32_t, ULAB_MAX_DIMS);
    if(!ndarray_can_broadcast(ndarray_x, ndarray_y, &ndim, shape, xstrides, ystrides)) {
        mp_raise_ValueError(translate("operands could not be broadcast together"));
        m_del(size_t, shape, ULAB_MAX_DIMS);
        m_del(int32_t, xstrides, ULAB_MAX_DIMS);
        m_del(int32_t, ystrides, ULAB_MAX_DIMS);
    }

    uint8_t *xarray = (uint8_t *)ndarray_x->array;
    uint8_t *yarray = (uint8_t *)ndarray_y->array;

    ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
    mp_float_t *rarray = (mp_float_t *)results->array;
    ...





After the new strides have been calculated, the iteration loop is
identical to what we discussed in the previous section.



Contracting an ndarray

There are many operations that reduce the number of dimensions of an
ndarray by 1, i.e., that remove an axis from the tensor. The drill
is the same as before, with the exception that first we have to remove
the strides and shape that corresponds to the axis along which
we intend to contract. The numerical_reduce_axes function from
numerical.c [https://github.com/v923z/micropython-ulab/blob/master/code/numerical/numerical.c]
does that.

static void numerical_reduce_axes(ndarray_obj_t *ndarray, int8_t axis, size_t *shape, int32_t *strides) {
    // removes the values corresponding to a single axis from the shape and strides array
    uint8_t index = ULAB_MAX_DIMS - ndarray->ndim + axis;
    if((ndarray->ndim == 1) && (axis == 0)) {
        index = 0;
        shape[ULAB_MAX_DIMS - 1] = 0;
        return;
    }
    for(uint8_t i = ULAB_MAX_DIMS - 1; i > 0; i--) {
        if(i > index) {
            shape[i] = ndarray->shape[i];
            strides[i] = ndarray->strides[i];
        } else {
            shape[i] = ndarray->shape[i-1];
            strides[i] = ndarray->strides[i-1];
        }
    }
}





Once the reduced strides and shape are known, we place the axis
in question in the innermost loop, and wrap it with the loops, whose
coordinates are in the strides, and shape arrays. The
RUN_STD macro from
numerical.h [https://github.com/v923z/micropython-ulab/blob/master/code/numpy/numerical/numerical.h]
is a good example. The macro is expanded in the
numerical_sum_mean_std_ndarray function.

static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype, size_t ddof) {
    uint8_t *array = (uint8_t *)ndarray->array;
    size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
    memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
    int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
    memset(strides, 0, sizeof(uint32_t)*ULAB_MAX_DIMS);

    int8_t ax = mp_obj_get_int(axis);
    if(ax < 0) ax += ndarray->ndim;
    if((ax < 0) || (ax > ndarray->ndim - 1)) {
        mp_raise_ValueError(translate("index out of range"));
    }
    numerical_reduce_axes(ndarray, ax, shape, strides);
    uint8_t index = ULAB_MAX_DIMS - ndarray->ndim + ax;
    ndarray_obj_t *results = NULL;
    uint8_t *rarray = NULL;
    ...





Here is the macro for the three-dimensional case:

#define RUN_STD(ndarray, type, array, results, r, shape, strides, index, div) do {
    size_t k = 0;
    do {
        size_t l = 0;
        do {
            RUN_STD1((ndarray), type, (array), (results), (r), (index), (div));
            (array) -= (ndarray)->strides[(index)] * (ndarray)->shape[(index)];
            (array) += (strides)[ULAB_MAX_DIMS - 1];
            l++;
        } while(l < (shape)[ULAB_MAX_DIMS - 1]);
        (array) -= (strides)[ULAB_MAX_DIMS - 2] * (shape)[ULAB_MAX_DIMS-2];
        (array) += (strides)[ULAB_MAX_DIMS - 3];
        k++;
    } while(k < (shape)[ULAB_MAX_DIMS - 2]);
} while(0)





In RUN_STD, we simply move our pointers; the calculation itself
happens in the RUN_STD1 macro below. (Note that this is the
implementation of the numerically stable Welford algorithm.)

#define RUN_STD1(ndarray, type, array, results, r, index, div)
({
    mp_float_t M, m, S = 0.0, s = 0.0;
    M = m = *(mp_float_t *)((type *)(array));
    for(size_t i=1; i < (ndarray)->shape[(index)]; i++) {
        (array) += (ndarray)->strides[(index)];
        mp_float_t value = *(mp_float_t *)((type *)(array));
        m = M + (value - M) / (mp_float_t)i;
        s = S + (value - M) * (value - m);
        M = m;
        S = s;
    }
    (array) += (ndarray)->strides[(index)];
    *(r)++ = MICROPY_FLOAT_C_FUN(sqrt)((ndarray)->shape[(index)] * s / (div));
})







Upcasting

When in an operation the dtypes of two arrays are different, the
result’s dtype will be decided by the following upcasting rules:


	Operations with two ndarrays of the same dtype preserve
their dtype, even when the results overflow.


	if either of the operands is a float, the result automatically
becomes a float


	otherwise


	uint8 + int8 => int16,


	uint8 + int16 => int16


	uint8 + uint16 => uint16


	int8 + int16 => int16


	int8 + uint16 => uint16 (in numpy, the result is a
int32)


	uint16 + int16 => float (in numpy, the result is a
int32)






	When one operand of a binary operation is a generic scalar
micropython variable, i.e., mp_obj_int, or mp_obj_float,
it will be converted to a linear array of length 1, and with the
smallest dtype that can accommodate the variable in question.
After that the broadcasting rules apply, as described in the section
Iterating over two ndarrays simultaneously:
broadcasting




Upcasting is resolved in place, wherever it is required. Notable
examples can be found in
ndarray_operators.c [https://github.com/v923z/micropython-ulab/blob/master/code/ndarray_operators.c]



Slicing and indexing

An ndarray can be indexed with three types of objects: integer
scalars, slices, and another ndarray, whose elements are either
integer scalars, or Booleans. Since slice and integer indices can be
thought of as modifications of the strides, these indices return a
view of the ndarray. This statement does not hold for ndarray
indices, and therefore, the return a copy of the array.



Extending ulab

The user module is disabled by default, as can be seen from the last
couple of lines of
ulab.h [https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h]

// user-defined module
#ifndef ULAB_USER_MODULE
#define ULAB_USER_MODULE                (0)
#endif





The module contains a very simple function, user_dummy, and this
function is bound to the module itself. In other words, even if the
module is enabled, one has to import:

import ulab
from ulab import user

user.dummy_function(2.5)





which should just return 5.0. Even if numpy-compatibility is
required (i.e., if most functions are bound at the top level to ulab
directly), having to import the module has a great advantage.
Namely, only the
user.h [https://github.com/v923z/micropython-ulab/blob/master/code/user/user.h]
and
user.c [https://github.com/v923z/micropython-ulab/blob/master/code/user/user.c]
files have to be modified, thus it should be relatively straightforward
to update your local copy from
github [https://github.com/v923z/micropython-ulab/blob/master/].

Now, let us see, how we can add a more meaningful function.



Creating a new ndarray

In the General comments sections we have seen
the type definition of an ndarray. This structure can be generated
by means of a couple of functions listed in
ndarray.c [https://github.com/v923z/micropython-ulab/blob/master/code/ndarray.c].


ndarray_new_ndarray

The ndarray_new_ndarray functions is called by all other
array-generating functions. It takes the number of dimensions, ndim,
a uint8_t, the shape, a pointer to size_t, the strides,
a pointer to int32_t, and dtype, another uint8_t as its
arguments, and returns a new array with all entries initialised to 0.

Assuming that ULAB_MAX_DIMS > 2, a new dense array of dimension 3,
of shape (3, 4, 5), of strides (1000, 200, 10), and dtype
uint16_t can be generated by the following instructions

size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
shape[ULAB_MAX_DIMS - 1] = 5;
shape[ULAB_MAX_DIMS - 2] = 4;
shape[ULAB_MAX_DIMS - 3] = 3;

int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
strides[ULAB_MAX_DIMS - 1] = 10;
strides[ULAB_MAX_DIMS - 2] = 200;
strides[ULAB_MAX_DIMS - 3] = 1000;

ndarray_obj_t *new_ndarray = ndarray_new_ndarray(3, shape, strides, NDARRAY_UINT16);







ndarray_new_dense_ndarray

The functions simply calculates the strides from the shape, and
calls ndarray_new_ndarray. Assuming that ULAB_MAX_DIMS > 2, a
new dense array of dimension 3, of shape (3, 4, 5), and dtype
mp_float_t can be generated by the following instructions

size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
shape[ULAB_MAX_DIMS - 1] = 5;
shape[ULAB_MAX_DIMS - 2] = 4;
shape[ULAB_MAX_DIMS - 3] = 3;

ndarray_obj_t *new_ndarray = ndarray_new_dense_ndarray(3, shape, NDARRAY_FLOAT);







ndarray_new_linear_array

Since the dimensions of a linear array are known (1), the
ndarray_new_linear_array takes the length, a size_t, and the
dtype, an uint8_t. Internally, ndarray_new_linear_array
generates the shape array, and calls ndarray_new_dense_array
with ndim = 1.

A linear array of length 100, and dtype uint8 could be created
by the function call

ndarray_obj_t *new_ndarray = ndarray_new_linear_array(100, NDARRAY_UINT8)







ndarray_new_ndarray_from_tuple

This function takes a tuple, which should hold the lengths of the
axes (in other words, the shape), and the dtype, and calls
internally ndarray_new_dense_array. A new ndarray can be
generated by calling

ndarray_obj_t *new_ndarray = ndarray_new_ndarray_from_tuple(shape, NDARRAY_FLOAT);





where shape is a tuple.



ndarray_new_view

This function crates a view, and takes the source, an ndarray, the
number of dimensions, an uint8_t, the shape, a pointer to
size_t, the strides, a pointer to int32_t, and the offset,
an int32_t as arguments. The offset is the number of bytes by which
the void array pointer is shifted. E.g., the python statement

a = np.array([0, 1, 2, 3, 4, 5], dtype=uint8)
b = a[1::2]





produces the array

array([1, 3, 5], dtype=uint8)





which holds its data at position x0 + 1, if a’s pointer is at
x0. In this particular case, the offset is 1.

The array b from the example above could be generated as

size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
shape[ULAB_MAX_DIMS - 1] = 3;

int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
strides[ULAB_MAX_DIMS - 1] = 2;

int32_t offset = 1;
uint8_t ndim = 1;

ndarray_obj_t *new_ndarray = ndarray_new_view(ndarray_a, ndim, shape, strides, offset);







ndarray_copy_array

The ndarray_copy_array function can be used for copying the contents
of an array. Note that the target array has to be created beforehand.
E.g., a one-to-one copy can be gotten by

ndarray_obj_t *new_ndarray = ndarray_new_ndarray(source->ndim, source->shape, source->strides, source->dtype);
ndarray_copy_array(source, new_ndarray);





Note that the function cannot be used for forcing type conversion, i.e.,
the input and output types must be identical, because the function
simply calls the memcpy function. On the other hand, the input and
output strides do not necessarily have to be equal.



ndarray_copy_view

The ndarray_obj_t *new_ndarray = ... instruction can be saved by
calling the ndarray_copy_view function with the single source
argument.




Accessing data in the ndarray

Having seen, how arrays can be generated and copied, it is time to look
at how the data in an ndarray can be accessed and modified.

For starters, let us suppose that the object in question comes from the
user (i.e., via the micropython interface), First, we have to
acquire a pointer to the ndarray by calling

ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(object_in);





If it is not clear, whether the object is an ndarray (e.g., if we
want to write a function that can take ndarrays, and other
iterables as its argument), we find this out by evaluating

mp_obj_is_type(object_in, &ulab_ndarray_type)





which should return true. Once the pointer is at our disposal, we
can get a pointer to the underlying numerical array as discussed
earlier, i.e.,

uint8_t *array = (uint8_t *)ndarray->array;





If you need to find out the dtype of the array, you can get it by
accessing the dtype member of the ndarray, i.e.,

ndarray->dtype





should be equal to B, b, H, h, or f. The size of a
single item is stored in the itemsize member. This number should be
equal to 1, if the dtype is B, or b, 2, if the dtype is
H, or h, 4, if the dtype is f, and 8 for d.



Boilerplate

In the next section, we will construct a function that generates the
element-wise square of a dense array, otherwise, raises a TypeError
exception. Dense arrays can easily be iterated over, since we do not
have to care about the shape and the strides. If the array is
sparse, the section Iterating over elements of a
tensor should contain hints as
to how the iteration can be implemented.

The function is listed under
user.c [https://github.com/v923z/micropython-ulab/tree/master/code/user/].
The user module is bound to ulab in
ulab.c [https://github.com/v923z/micropython-ulab/tree/master/code/ulab.c]
in the lines

#if ULAB_USER_MODULE
    { MP_ROM_QSTR(MP_QSTR_user), MP_ROM_PTR(&ulab_user_module) },
#endif





which assumes that at the very end of
ulab.h [https://github.com/v923z/micropython-ulab/tree/master/code/ulab.h]
the

// user-defined module
#ifndef ULAB_USER_MODULE
#define ULAB_USER_MODULE                (1)
#endif





constant has been set to 1. After compilation, you can call a particular
user function in python by importing the module first, i.e.,

from ulab import numpy as np
from ulab import user

user.some_function(...)





This separation of user-defined functions from the rest of the code
ensures that the integrity of the main module and all its functions are
always preserved. Even in case of a catastrophic failure, you can
exclude the user module, and start over.

And now the function:

static mp_obj_t user_square(mp_obj_t arg) {
    // the function takes a single dense ndarray, and calculates the
    // element-wise square of its entries

    // raise a TypeError exception, if the input is not an ndarray
    if(!mp_obj_is_type(arg, &ulab_ndarray_type)) {
        mp_raise_TypeError(translate("input must be an ndarray"));
    }
    ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(arg);

    // make sure that the input is a dense array
    if(!ndarray_is_dense(ndarray)) {
        mp_raise_TypeError(translate("input must be a dense ndarray"));
    }

    // if the input is a dense array, create `results` with the same number of
    // dimensions, shape, and dtype
    ndarray_obj_t *results = ndarray_new_dense_ndarray(ndarray->ndim, ndarray->shape, ndarray->dtype);

    // since in a dense array the iteration over the elements is trivial, we
    // can cast the data arrays ndarray->array and results->array to the actual type
    if(ndarray->dtype == NDARRAY_UINT8) {
        uint8_t *array = (uint8_t *)ndarray->array;
        uint8_t *rarray = (uint8_t *)results->array;
        for(size_t i=0; i < ndarray->len; i++, array++) {
            *rarray++ = (*array) * (*array);
        }
    } else if(ndarray->dtype == NDARRAY_INT8) {
        int8_t *array = (int8_t *)ndarray->array;
        int8_t *rarray = (int8_t *)results->array;
        for(size_t i=0; i < ndarray->len; i++, array++) {
            *rarray++ = (*array) * (*array);
        }
    } else if(ndarray->dtype == NDARRAY_UINT16) {
        uint16_t *array = (uint16_t *)ndarray->array;
        uint16_t *rarray = (uint16_t *)results->array;
        for(size_t i=0; i < ndarray->len; i++, array++) {
            *rarray++ = (*array) * (*array);
        }
    } else if(ndarray->dtype == NDARRAY_INT16) {
        int16_t *array = (int16_t *)ndarray->array;
        int16_t *rarray = (int16_t *)results->array;
        for(size_t i=0; i < ndarray->len; i++, array++) {
            *rarray++ = (*array) * (*array);
        }
    } else { // if we end up here, the dtype is NDARRAY_FLOAT
        mp_float_t *array = (mp_float_t *)ndarray->array;
        mp_float_t *rarray = (mp_float_t *)results->array;
        for(size_t i=0; i < ndarray->len; i++, array++) {
            *rarray++ = (*array) * (*array);
        }
    }
    // at the end, return a micropython object
    return MP_OBJ_FROM_PTR(results);
}





To summarise, the steps for implementing a function are


	If necessary, inspect the type of the input object, which is always a
mp_obj_t object


	If the input is an ndarray_obj_t, acquire a pointer to it by
calling ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(arg);


	Create a new array, or modify the existing one; get a pointer to the
data by calling uint8_t *array = (uint8_t *)ndarray->array;, or
something equivalent


	Once the new data have been calculated, return a micropython
object by calling MP_OBJ_FROM_PTR(...).




The listing above contains the implementation of the function, but as
such, it cannot be called from python: it still has to be bound to
the name space. This we do by first defining a function object in

MP_DEFINE_CONST_FUN_OBJ_1(user_square_obj, user_square);





micropython defines a number of MP_DEFINE_CONST_FUN_OBJ_N macros
in
obj.h [https://github.com/micropython/micropython/blob/master/py/obj.h].
N is always the number of arguments the function takes. We had a
function definition static mp_obj_t user_square(mp_obj_t arg), i.e.,
we dealt with a single argument.

Finally, we have to bind this function object in the globals table of
the user module:

STATIC const mp_rom_map_elem_t ulab_user_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_user) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_square), (mp_obj_t)&user_square_obj },
};





Thus, the three steps required for the definition of a user-defined
function are


	The low-level implementation of the function itself


	The definition of a function object by calling
MP_DEFINE_CONST_FUN_OBJ_N()


	Binding this function object to the namespace in the
ulab_user_globals_table[]
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